MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssabral Structured version   Visualization version   GIF version

Theorem ssabral 3897
Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
Assertion
Ref Expression
ssabral (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssabral
StepHypRef Expression
1 ssab 3896 . 2 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 df-ral 3121 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
31, 2bitr4i 270 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1656  wcel 2166  {cab 2810  wral 3116  wss 3797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ral 3121  df-in 3804  df-ss 3811
This theorem is referenced by:  comppfsc  21705  txdis1cn  21808  qustgplem  22293  xrhmeo  23114  cncmet  23489  itg1addlem4  23864  subfacp1lem6  31712  poimirlem9  33961  istotbnd3  34111  sstotbnd  34115  heibor1lem  34149  heibor1  34150  setis  43338
  Copyright terms: Public domain W3C validator