Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssabral | Structured version Visualization version GIF version |
Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.) |
Ref | Expression |
---|---|
ssabral | ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssab 3995 | . 2 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | df-ral 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2106 {cab 2715 ∀wral 3064 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: comppfsc 22683 txdis1cn 22786 qustgplem 23272 xrhmeo 24109 cncmet 24486 itg1addlem4 24863 itg1addlem4OLD 24864 subfacp1lem6 33147 poimirlem9 35786 istotbnd3 35929 sstotbnd 35933 heibor1lem 35967 heibor1 35968 setis 46403 |
Copyright terms: Public domain | W3C validator |