MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssabral Structured version   Visualization version   GIF version

Theorem ssabral 4028
Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
Assertion
Ref Expression
ssabral (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssabral
StepHypRef Expression
1 ssab 4027 . 2 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 df-ral 3045 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
31, 2bitr4i 278 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  {cab 2707  wral 3044  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-ss 3931
This theorem is referenced by:  comppfsc  23419  txdis1cn  23522  qustgplem  24008  xrhmeo  24844  cncmet  25222  itg1addlem4  25600  subfacp1lem6  35172  poimirlem9  37623  istotbnd3  37765  sstotbnd  37769  heibor1lem  37803  heibor1  37804  setis  49687
  Copyright terms: Public domain W3C validator