| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssabral | Structured version Visualization version GIF version | ||
| Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.) |
| Ref | Expression |
|---|---|
| ssabral | ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssab 4030 | . 2 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 {cab 2708 ∀wral 3045 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-ss 3934 |
| This theorem is referenced by: comppfsc 23426 txdis1cn 23529 qustgplem 24015 xrhmeo 24851 cncmet 25229 itg1addlem4 25607 subfacp1lem6 35179 poimirlem9 37630 istotbnd3 37772 sstotbnd 37776 heibor1lem 37810 heibor1 37811 setis 49691 |
| Copyright terms: Public domain | W3C validator |