MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssabral Structured version   Visualization version   GIF version

Theorem ssabral 4059
Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
Assertion
Ref Expression
ssabral (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssabral
StepHypRef Expression
1 ssab 4058 . 2 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 df-ral 3062 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
31, 2bitr4i 277 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2106  {cab 2709  wral 3061  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  comppfsc  23035  txdis1cn  23138  qustgplem  23624  xrhmeo  24461  cncmet  24838  itg1addlem4  25215  itg1addlem4OLD  25216  subfacp1lem6  34171  poimirlem9  36492  istotbnd3  36634  sstotbnd  36638  heibor1lem  36672  heibor1  36673  setis  47733
  Copyright terms: Public domain W3C validator