Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trssfir1omregs Structured version   Visualization version   GIF version

Theorem trssfir1omregs 35153
Description: If every element in a transitive class is finite, then every element is also hereditarily finite. This version of trssfir1om 35143 replaces setinds2 9648 with setinds2regs 35150. (Contributed by BTernaryTau, 20-Jan-2026.)
Assertion
Ref Expression
trssfir1omregs ((Tr 𝐴𝐴 ⊆ Fin) → 𝐴 (𝑅1 “ ω))

Proof of Theorem trssfir1omregs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2816 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
213anbi1d 1442 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) ↔ (𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin)))
3 eleq1w 2816 . . . . . 6 (𝑥 = 𝑦 → (𝑥 (𝑅1 “ ω) ↔ 𝑦 (𝑅1 “ ω)))
42, 3imbi12d 344 . . . . 5 (𝑥 = 𝑦 → (((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑥 (𝑅1 “ ω)) ↔ ((𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑦 (𝑅1 “ ω))))
5 ssel2 3925 . . . . . . . . . 10 ((𝐴 ⊆ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
65ancoms 458 . . . . . . . . 9 ((𝑥𝐴𝐴 ⊆ Fin) → 𝑥 ∈ Fin)
763adant2 1131 . . . . . . . 8 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑥 ∈ Fin)
87a1i 11 . . . . . . 7 (∀𝑦𝑥 ((𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑦 (𝑅1 “ ω)) → ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑥 ∈ Fin))
9 trel 5208 . . . . . . . . . . . . 13 (Tr 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
109expcomd 416 . . . . . . . . . . . 12 (Tr 𝐴 → (𝑥𝐴 → (𝑦𝑥𝑦𝐴)))
1110impcom 407 . . . . . . . . . . 11 ((𝑥𝐴 ∧ Tr 𝐴) → (𝑦𝑥𝑦𝐴))
12113adant3 1132 . . . . . . . . . 10 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → (𝑦𝑥𝑦𝐴))
13 simp2 1137 . . . . . . . . . . 11 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → Tr 𝐴)
1413a1d 25 . . . . . . . . . 10 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → (𝑦𝑥 → Tr 𝐴))
15 simp3 1138 . . . . . . . . . . 11 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝐴 ⊆ Fin)
1615a1d 25 . . . . . . . . . 10 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → (𝑦𝑥𝐴 ⊆ Fin))
1712, 14, 163jcad 1129 . . . . . . . . 9 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → (𝑦𝑥 → (𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin)))
1817ralrimiv 3124 . . . . . . . 8 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → ∀𝑦𝑥 (𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin))
19 ralim 3073 . . . . . . . 8 (∀𝑦𝑥 ((𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑦 (𝑅1 “ ω)) → (∀𝑦𝑥 (𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))
2018, 19syl5 34 . . . . . . 7 (∀𝑦𝑥 ((𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑦 (𝑅1 “ ω)) → ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))
218, 20jcad 512 . . . . . 6 (∀𝑦𝑥 ((𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑦 (𝑅1 “ ω)) → ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω))))
22 r1omhf 35138 . . . . . 6 (𝑥 (𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))
2321, 22imbitrrdi 252 . . . . 5 (∀𝑦𝑥 ((𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑦 (𝑅1 “ ω)) → ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑥 (𝑅1 “ ω)))
244, 23setinds2regs 35150 . . . 4 ((𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin) → 𝑥 (𝑅1 “ ω))
25243expib 1122 . . 3 (𝑥𝐴 → ((Tr 𝐴𝐴 ⊆ Fin) → 𝑥 (𝑅1 “ ω)))
2625com12 32 . 2 ((Tr 𝐴𝐴 ⊆ Fin) → (𝑥𝐴𝑥 (𝑅1 “ ω)))
2726ssrdv 3936 1 ((Tr 𝐴𝐴 ⊆ Fin) → 𝐴 (𝑅1 “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  wral 3048  wss 3898   cuni 4858  Tr wtr 5200  cima 5622  ωcom 7802  Fincfn 8875  𝑅1cr1 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-regs 35145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-en 8876  df-dom 8877  df-fin 8879  df-r1 9664  df-rank 9665
This theorem is referenced by:  r1omhfbregs  35154
  Copyright terms: Public domain W3C validator