| Step | Hyp | Ref
| Expression |
| 1 | | eleq1w 2814 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 2 | 1 | 3anbi1d 1442 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) ↔ (𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin))) |
| 3 | | eleq1w 2814 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ∪
(𝑅1 “ ω) ↔ 𝑦 ∈ ∪
(𝑅1 “ ω))) |
| 4 | 2, 3 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑥 ∈ ∪
(𝑅1 “ ω)) ↔ ((𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑦 ∈ ∪
(𝑅1 “ ω)))) |
| 5 | | ssel2 3929 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ Fin ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ Fin) |
| 6 | 5 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑥 ∈ Fin) |
| 7 | 6 | 3adant2 1131 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑥 ∈ Fin) |
| 8 | 7 | a1i 11 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 ((𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑦 ∈ ∪
(𝑅1 “ ω)) → ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑥 ∈ Fin)) |
| 9 | | trel 5206 |
. . . . . . . . . . . . 13
⊢ (Tr 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 10 | 9 | expcomd 416 |
. . . . . . . . . . . 12
⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
| 11 | 10 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
| 12 | 11 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
| 13 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → Tr 𝐴) |
| 14 | 13 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → (𝑦 ∈ 𝑥 → Tr 𝐴)) |
| 15 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ Fin) |
| 16 | 15 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → (𝑦 ∈ 𝑥 → 𝐴 ⊆ Fin)) |
| 17 | 12, 14, 16 | 3jcad 1129 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin))) |
| 18 | 17 | ralrimiv 3123 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin)) |
| 19 | | ralim 3072 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 ((𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑦 ∈ ∪
(𝑅1 “ ω)) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω))) |
| 20 | 18, 19 | syl5 34 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 ((𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑦 ∈ ∪
(𝑅1 “ ω)) → ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω))) |
| 21 | 8, 20 | jcad 512 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 ((𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑦 ∈ ∪
(𝑅1 “ ω)) → ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω)))) |
| 22 | | r1omhf 35108 |
. . . . . 6
⊢ (𝑥 ∈ ∪ (𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω))) |
| 23 | 21, 22 | imbitrrdi 252 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 ((𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑦 ∈ ∪
(𝑅1 “ ω)) → ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑥 ∈ ∪
(𝑅1 “ ω))) |
| 24 | 4, 23 | setinds2regs 35117 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑥 ∈ ∪
(𝑅1 “ ω)) |
| 25 | 24 | 3expib 1122 |
. . 3
⊢ (𝑥 ∈ 𝐴 → ((Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝑥 ∈ ∪
(𝑅1 “ ω))) |
| 26 | 25 | com12 32 |
. 2
⊢ ((Tr
𝐴 ∧ 𝐴 ⊆ Fin) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪
(𝑅1 “ ω))) |
| 27 | 26 | ssrdv 3940 |
1
⊢ ((Tr
𝐴 ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ ∪
(𝑅1 “ ω)) |