| Step | Hyp | Ref
| Expression |
| 1 | | tz9.1regs.1 |
. 2
⊢ 𝐴 ∈ V |
| 2 | | sseq1 3963 |
. . . 4
⊢ (𝑧 = 𝐴 → (𝑧 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) |
| 3 | | cleq1lem 14907 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦))) |
| 4 | 3 | imbi1d 341 |
. . . . 5
⊢ (𝑧 = 𝐴 → (((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 5 | 4 | albidv 1920 |
. . . 4
⊢ (𝑧 = 𝐴 → (∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 6 | 2, 5 | 3anbi13d 1440 |
. . 3
⊢ (𝑧 = 𝐴 → ((𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)))) |
| 7 | 6 | exbidv 1921 |
. 2
⊢ (𝑧 = 𝐴 → (∃𝑥(𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)))) |
| 8 | | sseq1 3963 |
. . . . 5
⊢ (𝑧 = 𝑤 → (𝑧 ⊆ 𝑥 ↔ 𝑤 ⊆ 𝑥)) |
| 9 | | cleq1lem 14907 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) ↔ (𝑤 ⊆ 𝑦 ∧ Tr 𝑦))) |
| 10 | 9 | imbi1d 341 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 11 | 10 | albidv 1920 |
. . . . 5
⊢ (𝑧 = 𝑤 → (∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 12 | 8, 11 | 3anbi13d 1440 |
. . . 4
⊢ (𝑧 = 𝑤 → ((𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)))) |
| 13 | 12 | exbidv 1921 |
. . 3
⊢ (𝑧 = 𝑤 → (∃𝑥(𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ ∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)))) |
| 14 | | vex 3442 |
. . . . 5
⊢ 𝑧 ∈ V |
| 15 | | 3simpa 1148 |
. . . . . . . . 9
⊢ ((𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) → (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)) |
| 16 | 15 | eximi 1835 |
. . . . . . . 8
⊢
(∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) → ∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥)) |
| 17 | | intexab 5288 |
. . . . . . . 8
⊢
(∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥) ↔ ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) |
| 18 | 16, 17 | sylib 218 |
. . . . . . 7
⊢
(∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) → ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) |
| 19 | 18 | ralimi 3066 |
. . . . . 6
⊢
(∀𝑤 ∈
𝑧 ∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) → ∀𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) |
| 20 | | iunexg 7905 |
. . . . . 6
⊢ ((𝑧 ∈ V ∧ ∀𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) → ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) |
| 21 | 14, 19, 20 | sylancr 587 |
. . . . 5
⊢
(∀𝑤 ∈
𝑧 ∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) → ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) |
| 22 | | unexg 7683 |
. . . . 5
⊢ ((𝑧 ∈ V ∧ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∈ V) |
| 23 | 14, 21, 22 | sylancr 587 |
. . . 4
⊢
(∀𝑤 ∈
𝑧 ∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∈ V) |
| 24 | | ssun1 4131 |
. . . . 5
⊢ 𝑧 ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 25 | | uniun 4884 |
. . . . . . 7
⊢ ∪ (𝑧
∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) = (∪ 𝑧 ∪ ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 26 | | uniiun 5010 |
. . . . . . . . . 10
⊢ ∪ 𝑧 =
∪ 𝑤 ∈ 𝑧 𝑤 |
| 27 | | ssmin 4920 |
. . . . . . . . . . . 12
⊢ 𝑤 ⊆ ∩ {𝑥
∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 28 | 27 | rgenw 3048 |
. . . . . . . . . . 11
⊢
∀𝑤 ∈
𝑧 𝑤 ⊆ ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 29 | | ss2iun 4963 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
𝑧 𝑤 ⊆ ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} → ∪
𝑤 ∈ 𝑧 𝑤 ⊆ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . . . 10
⊢ ∪ 𝑤 ∈ 𝑧 𝑤 ⊆ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 31 | 26, 30 | eqsstri 3984 |
. . . . . . . . 9
⊢ ∪ 𝑧
⊆ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 32 | | ssun4 4134 |
. . . . . . . . 9
⊢ (∪ 𝑧
⊆ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} → ∪ 𝑧 ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . 8
⊢ ∪ 𝑧
⊆ (𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 34 | | trint 5219 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
{𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr ∩
{𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 35 | | sseq2 3964 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑤 ⊆ 𝑥 ↔ 𝑤 ⊆ 𝑦)) |
| 36 | | treq 5209 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) |
| 37 | 35, 36 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((𝑤 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝑤 ⊆ 𝑦 ∧ Tr 𝑦))) |
| 38 | 37 | cbvabv 2799 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} = {𝑦 ∣ (𝑤 ⊆ 𝑦 ∧ Tr 𝑦)} |
| 39 | 38 | eqabri 2871 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (𝑤 ⊆ 𝑦 ∧ Tr 𝑦)) |
| 40 | 39 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} → Tr 𝑦) |
| 41 | 34, 40 | mprg 3050 |
. . . . . . . . . . . 12
⊢ Tr ∩ {𝑥
∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 42 | 41 | rgenw 3048 |
. . . . . . . . . . 11
⊢
∀𝑤 ∈
𝑧 Tr ∩ {𝑥
∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 43 | | triun 5216 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
𝑧 Tr ∩ {𝑥
∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} → Tr ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 44 | 42, 43 | ax-mp 5 |
. . . . . . . . . 10
⊢ Tr
∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 45 | | df-tr 5203 |
. . . . . . . . . 10
⊢ (Tr
∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ ∪
∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 46 | 44, 45 | mpbi 230 |
. . . . . . . . 9
⊢ ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 47 | | ssun4 4134 |
. . . . . . . . 9
⊢ (∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} → ∪
∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 48 | 46, 47 | ax-mp 5 |
. . . . . . . 8
⊢ ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 49 | 33, 48 | unssi 4144 |
. . . . . . 7
⊢ (∪ 𝑧
∪ ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 50 | 25, 49 | eqsstri 3984 |
. . . . . 6
⊢ ∪ (𝑧
∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 51 | | df-tr 5203 |
. . . . . 6
⊢ (Tr
(𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ↔ ∪
(𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 52 | 50, 51 | mpbir 231 |
. . . . 5
⊢ Tr (𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 53 | | ssel 3931 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ 𝑦 → (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦)) |
| 54 | | trss 5212 |
. . . . . . . . . . . 12
⊢ (Tr 𝑦 → (𝑤 ∈ 𝑦 → 𝑤 ⊆ 𝑦)) |
| 55 | 53, 54 | sylan9 507 |
. . . . . . . . . . 11
⊢ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑤 ∈ 𝑧 → 𝑤 ⊆ 𝑦)) |
| 56 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → Tr 𝑦) |
| 57 | 55, 56 | jctird 526 |
. . . . . . . . . 10
⊢ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑤 ∈ 𝑧 → (𝑤 ⊆ 𝑦 ∧ Tr 𝑦))) |
| 58 | | rabab 3469 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ V ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 59 | 58 | inteqi 4903 |
. . . . . . . . . . 11
⊢ ∩ {𝑥
∈ V ∣ (𝑤 ⊆
𝑥 ∧ Tr 𝑥)} = ∩ {𝑥
∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 60 | | vex 3442 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 61 | 37 | intminss 4927 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ V ∧ (𝑤 ⊆ 𝑦 ∧ Tr 𝑦)) → ∩ {𝑥 ∈ V ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) |
| 62 | 60, 61 | mpan 690 |
. . . . . . . . . . 11
⊢ ((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → ∩ {𝑥 ∈ V ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) |
| 63 | 59, 62 | eqsstrrid 3977 |
. . . . . . . . . 10
⊢ ((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) |
| 64 | 57, 63 | syl6 35 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑤 ∈ 𝑧 → ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)) |
| 65 | 64 | ralrimiv 3120 |
. . . . . . . 8
⊢ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → ∀𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) |
| 66 | | iunss 4997 |
. . . . . . . 8
⊢ (∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦 ↔ ∀𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) |
| 67 | 65, 66 | sylibr 234 |
. . . . . . 7
⊢ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) |
| 68 | | unss 4143 |
. . . . . . . 8
⊢ ((𝑧 ⊆ 𝑦 ∧ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) ↔ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦) |
| 69 | 68 | biimpi 216 |
. . . . . . 7
⊢ ((𝑧 ⊆ 𝑦 ∧ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦) |
| 70 | 67, 69 | syldan 591 |
. . . . . 6
⊢ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦) |
| 71 | 70 | ax-gen 1795 |
. . . . 5
⊢
∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦) |
| 72 | 24, 52, 71 | 3pm3.2i 1340 |
. . . 4
⊢ (𝑧 ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) |
| 73 | | sseq2 3964 |
. . . . . . 7
⊢ (𝑢 = (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) → (𝑧 ⊆ 𝑢 ↔ 𝑧 ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}))) |
| 74 | | treq 5209 |
. . . . . . 7
⊢ (𝑢 = (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) → (Tr 𝑢 ↔ Tr (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}))) |
| 75 | | sseq1 3963 |
. . . . . . . . 9
⊢ (𝑢 = (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) → (𝑢 ⊆ 𝑦 ↔ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) |
| 76 | 75 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑢 = (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) → (((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦) ↔ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))) |
| 77 | 76 | albidv 1920 |
. . . . . . 7
⊢ (𝑢 = (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) → (∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦) ↔ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))) |
| 78 | 73, 74, 77 | 3anbi123d 1438 |
. . . . . 6
⊢ (𝑢 = (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) → ((𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦)) ↔ (𝑧 ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)))) |
| 79 | 78 | spcegv 3554 |
. . . . 5
⊢ ((𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑢(𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦)))) |
| 80 | | sseq2 3964 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → (𝑧 ⊆ 𝑢 ↔ 𝑧 ⊆ 𝑥)) |
| 81 | | treq 5209 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → (Tr 𝑢 ↔ Tr 𝑥)) |
| 82 | | sseq1 3963 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → (𝑢 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑦)) |
| 83 | 82 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → (((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦) ↔ ((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 84 | 83 | albidv 1920 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → (∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦) ↔ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 85 | 80, 81, 84 | 3anbi123d 1438 |
. . . . . 6
⊢ (𝑢 = 𝑥 → ((𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦)) ↔ (𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)))) |
| 86 | 85 | cbvexvw 2037 |
. . . . 5
⊢
(∃𝑢(𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑢 ⊆ 𝑦)) ↔ ∃𝑥(𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 87 | 79, 86 | imbitrdi 251 |
. . . 4
⊢ ((𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∪ ∪
𝑤 ∈ 𝑧 ∩ {𝑥 ∣ (𝑤 ⊆ 𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑥(𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)))) |
| 88 | 23, 72, 87 | mpisyl 21 |
. . 3
⊢
(∀𝑤 ∈
𝑧 ∃𝑥(𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) → ∃𝑥(𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
| 89 | 13, 88 | setinds2regs 35065 |
. 2
⊢
∃𝑥(𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
| 90 | 1, 7, 89 | vtocl 3515 |
1
⊢
∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |