Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz9.1regs Structured version   Visualization version   GIF version

Theorem tz9.1regs 35102
Description: Every set has a transitive closure (the smallest transitive extension). This version of tz9.1 9614 depends on ax-regs 35096 instead of ax-reg 9473 and ax-inf2 9526. This suggests a possible answer to the third question posed in tz9.1 9614, namely that the missing property is that countably infinite classes must obey regularity. In ZF set theory we can prove this by showing that countably infinite classes are sets and thus ax-reg 9473 applies to them directly, but in a finitist context it seems that an axiom like ax-regs 35096 is required since countably infinite classes are proper classes. (Contributed by BTernaryTau, 31-Dec-2025.)
Hypothesis
Ref Expression
tz9.1regs.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1regs 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem tz9.1regs
Dummy variables 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1regs.1 . 2 𝐴 ∈ V
2 sseq1 3958 . . . 4 (𝑧 = 𝐴 → (𝑧𝑥𝐴𝑥))
3 cleq1lem 14881 . . . . . 6 (𝑧 = 𝐴 → ((𝑧𝑦 ∧ Tr 𝑦) ↔ (𝐴𝑦 ∧ Tr 𝑦)))
43imbi1d 341 . . . . 5 (𝑧 = 𝐴 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
54albidv 1921 . . . 4 (𝑧 = 𝐴 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
62, 53anbi13d 1440 . . 3 (𝑧 = 𝐴 → ((𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
76exbidv 1922 . 2 (𝑧 = 𝐴 → (∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8 sseq1 3958 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑥𝑤𝑥))
9 cleq1lem 14881 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝑦 ∧ Tr 𝑦) ↔ (𝑤𝑦 ∧ Tr 𝑦)))
109imbi1d 341 . . . . . 6 (𝑧 = 𝑤 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
1110albidv 1921 . . . . 5 (𝑧 = 𝑤 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
128, 113anbi13d 1440 . . . 4 (𝑧 = 𝑤 → ((𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
1312exbidv 1922 . . 3 (𝑧 = 𝑤 → (∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ ∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
14 vex 3438 . . . . 5 𝑧 ∈ V
15 3simpa 1148 . . . . . . . . 9 ((𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → (𝑤𝑥 ∧ Tr 𝑥))
1615eximi 1836 . . . . . . . 8 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∃𝑥(𝑤𝑥 ∧ Tr 𝑥))
17 intexab 5282 . . . . . . . 8 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥) ↔ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
1816, 17sylib 218 . . . . . . 7 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
1918ralimi 3067 . . . . . 6 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
20 iunexg 7890 . . . . . 6 ((𝑧 ∈ V ∧ ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
2114, 19, 20sylancr 587 . . . . 5 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
22 unexg 7671 . . . . 5 ((𝑧 ∈ V ∧ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V)
2314, 21, 22sylancr 587 . . . 4 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V)
24 ssun1 4126 . . . . 5 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
25 uniun 4880 . . . . . . 7 (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) = ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
26 uniiun 5005 . . . . . . . . . 10 𝑧 = 𝑤𝑧 𝑤
27 ssmin 4915 . . . . . . . . . . . 12 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
2827rgenw 3049 . . . . . . . . . . 11 𝑤𝑧 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
29 ss2iun 4958 . . . . . . . . . . 11 (∀𝑤𝑧 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑤𝑧 𝑤 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
3028, 29ax-mp 5 . . . . . . . . . 10 𝑤𝑧 𝑤 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
3126, 30eqsstri 3979 . . . . . . . . 9 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
32 ssun4 4129 . . . . . . . . 9 ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
3331, 32ax-mp 5 . . . . . . . 8 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
34 trint 5213 . . . . . . . . . . . . 13 (∀𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
35 sseq2 3959 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑤𝑥𝑤𝑦))
36 treq 5203 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
3735, 36anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝑤𝑥 ∧ Tr 𝑥) ↔ (𝑤𝑦 ∧ Tr 𝑦)))
3837cbvabv 2800 . . . . . . . . . . . . . . 15 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑦 ∣ (𝑤𝑦 ∧ Tr 𝑦)}
3938eqabri 2872 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ↔ (𝑤𝑦 ∧ Tr 𝑦))
4039simprbi 496 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → Tr 𝑦)
4134, 40mprg 3051 . . . . . . . . . . . 12 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
4241rgenw 3049 . . . . . . . . . . 11 𝑤𝑧 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
43 triun 5210 . . . . . . . . . . 11 (∀𝑤𝑧 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4442, 43ax-mp 5 . . . . . . . . . 10 Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
45 df-tr 5197 . . . . . . . . . 10 (Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ↔ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4644, 45mpbi 230 . . . . . . . . 9 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
47 ssun4 4129 . . . . . . . . 9 ( 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
4846, 47ax-mp 5 . . . . . . . 8 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4933, 48unssi 4139 . . . . . . 7 ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
5025, 49eqsstri 3979 . . . . . 6 (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
51 df-tr 5197 . . . . . 6 (Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
5250, 51mpbir 231 . . . . 5 Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
53 ssel 3926 . . . . . . . . . . . 12 (𝑧𝑦 → (𝑤𝑧𝑤𝑦))
54 trss 5206 . . . . . . . . . . . 12 (Tr 𝑦 → (𝑤𝑦𝑤𝑦))
5553, 54sylan9 507 . . . . . . . . . . 11 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧𝑤𝑦))
56 simpr 484 . . . . . . . . . . 11 ((𝑧𝑦 ∧ Tr 𝑦) → Tr 𝑦)
5755, 56jctird 526 . . . . . . . . . 10 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧 → (𝑤𝑦 ∧ Tr 𝑦)))
58 rabab 3465 . . . . . . . . . . . 12 {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
5958inteqi 4899 . . . . . . . . . . 11 {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
60 vex 3438 . . . . . . . . . . . 12 𝑦 ∈ V
6137intminss 4922 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ (𝑤𝑦 ∧ Tr 𝑦)) → {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6260, 61mpan 690 . . . . . . . . . . 11 ((𝑤𝑦 ∧ Tr 𝑦) → {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6359, 62eqsstrrid 3972 . . . . . . . . . 10 ((𝑤𝑦 ∧ Tr 𝑦) → {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6457, 63syl6 35 . . . . . . . . 9 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦))
6564ralrimiv 3121 . . . . . . . 8 ((𝑧𝑦 ∧ Tr 𝑦) → ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
66 iunss 4992 . . . . . . . 8 ( 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦 ↔ ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6765, 66sylibr 234 . . . . . . 7 ((𝑧𝑦 ∧ Tr 𝑦) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
68 unss 4138 . . . . . . . 8 ((𝑧𝑦 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
6968biimpi 216 . . . . . . 7 ((𝑧𝑦 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7067, 69syldan 591 . . . . . 6 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7170ax-gen 1796 . . . . 5 𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7224, 52, 713pm3.2i 1340 . . . 4 (𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))
73 sseq2 3959 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (𝑧𝑢𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})))
74 treq 5203 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (Tr 𝑢 ↔ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})))
75 sseq1 3958 . . . . . . . . 9 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (𝑢𝑦 ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))
7675imbi2d 340 . . . . . . . 8 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)))
7776albidv 1921 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)))
7873, 74, 773anbi123d 1438 . . . . . 6 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → ((𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ (𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))))
7978spcegv 3550 . . . . 5 ((𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑢(𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦))))
80 sseq2 3959 . . . . . . 7 (𝑢 = 𝑥 → (𝑧𝑢𝑧𝑥))
81 treq 5203 . . . . . . 7 (𝑢 = 𝑥 → (Tr 𝑢 ↔ Tr 𝑥))
82 sseq1 3958 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝑦𝑥𝑦))
8382imbi2d 340 . . . . . . . 8 (𝑢 = 𝑥 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8483albidv 1921 . . . . . . 7 (𝑢 = 𝑥 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8580, 81, 843anbi123d 1438 . . . . . 6 (𝑢 = 𝑥 → ((𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ (𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8685cbvexvw 2038 . . . . 5 (∃𝑢(𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8779, 86imbitrdi 251 . . . 4 ((𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8823, 72, 87mpisyl 21 . . 3 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8913, 88setinds2regs 35101 . 2 𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
901, 7, 89vtocl 3511 1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2110  {cab 2708  wral 3045  {crab 3393  Vcvv 3434  cun 3898  wss 3900   cuni 4857   cint 4895   ciun 4939  Tr wtr 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663  ax-regs 35096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-sn 4575  df-pr 4577  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-tr 5197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator