Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz9.1regs Structured version   Visualization version   GIF version

Theorem tz9.1regs 35137
Description: Every set has a transitive closure (the smallest transitive extension). This version of tz9.1 9625 depends on ax-regs 35131 instead of ax-reg 9484 and ax-inf2 9537. This suggests a possible answer to the third question posed in tz9.1 9625, namely that the missing property is that countably infinite classes must obey regularity. In ZF set theory we can prove this by showing that countably infinite classes are sets and thus ax-reg 9484 applies to them directly, but in a finitist context it seems that an axiom like ax-regs 35131 is required since countably infinite classes are proper classes. (Contributed by BTernaryTau, 31-Dec-2025.)
Hypothesis
Ref Expression
tz9.1regs.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1regs 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem tz9.1regs
Dummy variables 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1regs.1 . 2 𝐴 ∈ V
2 sseq1 3955 . . . 4 (𝑧 = 𝐴 → (𝑧𝑥𝐴𝑥))
3 cleq1lem 14895 . . . . . 6 (𝑧 = 𝐴 → ((𝑧𝑦 ∧ Tr 𝑦) ↔ (𝐴𝑦 ∧ Tr 𝑦)))
43imbi1d 341 . . . . 5 (𝑧 = 𝐴 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
54albidv 1921 . . . 4 (𝑧 = 𝐴 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
62, 53anbi13d 1440 . . 3 (𝑧 = 𝐴 → ((𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
76exbidv 1922 . 2 (𝑧 = 𝐴 → (∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8 sseq1 3955 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑥𝑤𝑥))
9 cleq1lem 14895 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝑦 ∧ Tr 𝑦) ↔ (𝑤𝑦 ∧ Tr 𝑦)))
109imbi1d 341 . . . . . 6 (𝑧 = 𝑤 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
1110albidv 1921 . . . . 5 (𝑧 = 𝑤 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
128, 113anbi13d 1440 . . . 4 (𝑧 = 𝑤 → ((𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
1312exbidv 1922 . . 3 (𝑧 = 𝑤 → (∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ ∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
14 vex 3440 . . . . 5 𝑧 ∈ V
15 3simpa 1148 . . . . . . . . 9 ((𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → (𝑤𝑥 ∧ Tr 𝑥))
1615eximi 1836 . . . . . . . 8 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∃𝑥(𝑤𝑥 ∧ Tr 𝑥))
17 intexab 5286 . . . . . . . 8 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥) ↔ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
1816, 17sylib 218 . . . . . . 7 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
1918ralimi 3069 . . . . . 6 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
20 iunexg 7901 . . . . . 6 ((𝑧 ∈ V ∧ ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
2114, 19, 20sylancr 587 . . . . 5 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
22 unexg 7682 . . . . 5 ((𝑧 ∈ V ∧ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V)
2314, 21, 22sylancr 587 . . . 4 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V)
24 ssun1 4127 . . . . 5 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
25 uniun 4881 . . . . . . 7 (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) = ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
26 uniiun 5009 . . . . . . . . . 10 𝑧 = 𝑤𝑧 𝑤
27 ssmin 4917 . . . . . . . . . . . 12 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
2827rgenw 3051 . . . . . . . . . . 11 𝑤𝑧 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
29 ss2iun 4960 . . . . . . . . . . 11 (∀𝑤𝑧 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑤𝑧 𝑤 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
3028, 29ax-mp 5 . . . . . . . . . 10 𝑤𝑧 𝑤 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
3126, 30eqsstri 3976 . . . . . . . . 9 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
32 ssun4 4130 . . . . . . . . 9 ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
3331, 32ax-mp 5 . . . . . . . 8 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
34 trint 5217 . . . . . . . . . . . . 13 (∀𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
35 sseq2 3956 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑤𝑥𝑤𝑦))
36 treq 5207 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
3735, 36anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝑤𝑥 ∧ Tr 𝑥) ↔ (𝑤𝑦 ∧ Tr 𝑦)))
3837cbvabv 2801 . . . . . . . . . . . . . . 15 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑦 ∣ (𝑤𝑦 ∧ Tr 𝑦)}
3938eqabri 2874 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ↔ (𝑤𝑦 ∧ Tr 𝑦))
4039simprbi 496 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → Tr 𝑦)
4134, 40mprg 3053 . . . . . . . . . . . 12 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
4241rgenw 3051 . . . . . . . . . . 11 𝑤𝑧 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
43 triun 5214 . . . . . . . . . . 11 (∀𝑤𝑧 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4442, 43ax-mp 5 . . . . . . . . . 10 Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
45 df-tr 5201 . . . . . . . . . 10 (Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ↔ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4644, 45mpbi 230 . . . . . . . . 9 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
47 ssun4 4130 . . . . . . . . 9 ( 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
4846, 47ax-mp 5 . . . . . . . 8 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4933, 48unssi 4140 . . . . . . 7 ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
5025, 49eqsstri 3976 . . . . . 6 (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
51 df-tr 5201 . . . . . 6 (Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
5250, 51mpbir 231 . . . . 5 Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
53 ssel 3923 . . . . . . . . . . . 12 (𝑧𝑦 → (𝑤𝑧𝑤𝑦))
54 trss 5210 . . . . . . . . . . . 12 (Tr 𝑦 → (𝑤𝑦𝑤𝑦))
5553, 54sylan9 507 . . . . . . . . . . 11 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧𝑤𝑦))
56 simpr 484 . . . . . . . . . . 11 ((𝑧𝑦 ∧ Tr 𝑦) → Tr 𝑦)
5755, 56jctird 526 . . . . . . . . . 10 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧 → (𝑤𝑦 ∧ Tr 𝑦)))
58 rabab 3467 . . . . . . . . . . . 12 {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
5958inteqi 4901 . . . . . . . . . . 11 {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
60 vex 3440 . . . . . . . . . . . 12 𝑦 ∈ V
6137intminss 4924 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ (𝑤𝑦 ∧ Tr 𝑦)) → {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6260, 61mpan 690 . . . . . . . . . . 11 ((𝑤𝑦 ∧ Tr 𝑦) → {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6359, 62eqsstrrid 3969 . . . . . . . . . 10 ((𝑤𝑦 ∧ Tr 𝑦) → {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6457, 63syl6 35 . . . . . . . . 9 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦))
6564ralrimiv 3123 . . . . . . . 8 ((𝑧𝑦 ∧ Tr 𝑦) → ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
66 iunss 4995 . . . . . . . 8 ( 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦 ↔ ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6765, 66sylibr 234 . . . . . . 7 ((𝑧𝑦 ∧ Tr 𝑦) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
68 unss 4139 . . . . . . . 8 ((𝑧𝑦 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
6968biimpi 216 . . . . . . 7 ((𝑧𝑦 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7067, 69syldan 591 . . . . . 6 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7170ax-gen 1796 . . . . 5 𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7224, 52, 713pm3.2i 1340 . . . 4 (𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))
73 sseq2 3956 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (𝑧𝑢𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})))
74 treq 5207 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (Tr 𝑢 ↔ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})))
75 sseq1 3955 . . . . . . . . 9 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (𝑢𝑦 ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))
7675imbi2d 340 . . . . . . . 8 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)))
7776albidv 1921 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)))
7873, 74, 773anbi123d 1438 . . . . . 6 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → ((𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ (𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))))
7978spcegv 3547 . . . . 5 ((𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑢(𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦))))
80 sseq2 3956 . . . . . . 7 (𝑢 = 𝑥 → (𝑧𝑢𝑧𝑥))
81 treq 5207 . . . . . . 7 (𝑢 = 𝑥 → (Tr 𝑢 ↔ Tr 𝑥))
82 sseq1 3955 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝑦𝑥𝑦))
8382imbi2d 340 . . . . . . . 8 (𝑢 = 𝑥 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8483albidv 1921 . . . . . . 7 (𝑢 = 𝑥 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8580, 81, 843anbi123d 1438 . . . . . 6 (𝑢 = 𝑥 → ((𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ (𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8685cbvexvw 2038 . . . . 5 (∃𝑢(𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8779, 86imbitrdi 251 . . . 4 ((𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8823, 72, 87mpisyl 21 . . 3 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8913, 88setinds2regs 35136 . 2 𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
901, 7, 89vtocl 3511 1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  {crab 3395  Vcvv 3436  cun 3895  wss 3897   cuni 4858   cint 4897   ciun 4941  Tr wtr 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-regs 35131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-sn 4576  df-pr 4578  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-tr 5201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator