Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz9.1regs Structured version   Visualization version   GIF version

Theorem tz9.1regs 35066
Description: Every set has a transitive closure (the smallest transitive extension). This version of tz9.1 9644 depends on ax-regs 35060 instead of ax-reg 9503 and ax-inf2 9556. This suggests a possible answer to the third question posed in tz9.1 9644, namely that the missing property is that countably infinite classes must obey regularity. In ZF set theory we can prove this by showing that countably infinite classes are sets and thus ax-reg 9503 applies to them directly, but in a finitist context it seems that an axiom like ax-regs 35060 is required since countably infinite classes are proper classes. (Contributed by BTernaryTau, 31-Dec-2025.)
Hypothesis
Ref Expression
tz9.1regs.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1regs 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem tz9.1regs
Dummy variables 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1regs.1 . 2 𝐴 ∈ V
2 sseq1 3963 . . . 4 (𝑧 = 𝐴 → (𝑧𝑥𝐴𝑥))
3 cleq1lem 14907 . . . . . 6 (𝑧 = 𝐴 → ((𝑧𝑦 ∧ Tr 𝑦) ↔ (𝐴𝑦 ∧ Tr 𝑦)))
43imbi1d 341 . . . . 5 (𝑧 = 𝐴 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
54albidv 1920 . . . 4 (𝑧 = 𝐴 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
62, 53anbi13d 1440 . . 3 (𝑧 = 𝐴 → ((𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
76exbidv 1921 . 2 (𝑧 = 𝐴 → (∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8 sseq1 3963 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑥𝑤𝑥))
9 cleq1lem 14907 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝑦 ∧ Tr 𝑦) ↔ (𝑤𝑦 ∧ Tr 𝑦)))
109imbi1d 341 . . . . . 6 (𝑧 = 𝑤 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
1110albidv 1920 . . . . 5 (𝑧 = 𝑤 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
128, 113anbi13d 1440 . . . 4 (𝑧 = 𝑤 → ((𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
1312exbidv 1921 . . 3 (𝑧 = 𝑤 → (∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ ∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
14 vex 3442 . . . . 5 𝑧 ∈ V
15 3simpa 1148 . . . . . . . . 9 ((𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → (𝑤𝑥 ∧ Tr 𝑥))
1615eximi 1835 . . . . . . . 8 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∃𝑥(𝑤𝑥 ∧ Tr 𝑥))
17 intexab 5288 . . . . . . . 8 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥) ↔ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
1816, 17sylib 218 . . . . . . 7 (∃𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
1918ralimi 3066 . . . . . 6 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
20 iunexg 7905 . . . . . 6 ((𝑧 ∈ V ∧ ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
2114, 19, 20sylancr 587 . . . . 5 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V)
22 unexg 7683 . . . . 5 ((𝑧 ∈ V ∧ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ∈ V) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V)
2314, 21, 22sylancr 587 . . . 4 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V)
24 ssun1 4131 . . . . 5 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
25 uniun 4884 . . . . . . 7 (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) = ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
26 uniiun 5010 . . . . . . . . . 10 𝑧 = 𝑤𝑧 𝑤
27 ssmin 4920 . . . . . . . . . . . 12 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
2827rgenw 3048 . . . . . . . . . . 11 𝑤𝑧 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
29 ss2iun 4963 . . . . . . . . . . 11 (∀𝑤𝑧 𝑤 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑤𝑧 𝑤 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
3028, 29ax-mp 5 . . . . . . . . . 10 𝑤𝑧 𝑤 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
3126, 30eqsstri 3984 . . . . . . . . 9 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
32 ssun4 4134 . . . . . . . . 9 ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
3331, 32ax-mp 5 . . . . . . . 8 𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
34 trint 5219 . . . . . . . . . . . . 13 (∀𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
35 sseq2 3964 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑤𝑥𝑤𝑦))
36 treq 5209 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
3735, 36anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝑤𝑥 ∧ Tr 𝑥) ↔ (𝑤𝑦 ∧ Tr 𝑦)))
3837cbvabv 2799 . . . . . . . . . . . . . . 15 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑦 ∣ (𝑤𝑦 ∧ Tr 𝑦)}
3938eqabri 2871 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ↔ (𝑤𝑦 ∧ Tr 𝑦))
4039simprbi 496 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → Tr 𝑦)
4134, 40mprg 3050 . . . . . . . . . . . 12 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
4241rgenw 3048 . . . . . . . . . . 11 𝑤𝑧 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
43 triun 5216 . . . . . . . . . . 11 (∀𝑤𝑧 Tr {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4442, 43ax-mp 5 . . . . . . . . . 10 Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
45 df-tr 5203 . . . . . . . . . 10 (Tr 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ↔ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4644, 45mpbi 230 . . . . . . . . 9 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
47 ssun4 4134 . . . . . . . . 9 ( 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
4846, 47ax-mp 5 . . . . . . . 8 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
4933, 48unssi 4144 . . . . . . 7 ( 𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
5025, 49eqsstri 3984 . . . . . 6 (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
51 df-tr 5203 . . . . . 6 (Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}))
5250, 51mpbir 231 . . . . 5 Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})
53 ssel 3931 . . . . . . . . . . . 12 (𝑧𝑦 → (𝑤𝑧𝑤𝑦))
54 trss 5212 . . . . . . . . . . . 12 (Tr 𝑦 → (𝑤𝑦𝑤𝑦))
5553, 54sylan9 507 . . . . . . . . . . 11 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧𝑤𝑦))
56 simpr 484 . . . . . . . . . . 11 ((𝑧𝑦 ∧ Tr 𝑦) → Tr 𝑦)
5755, 56jctird 526 . . . . . . . . . 10 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧 → (𝑤𝑦 ∧ Tr 𝑦)))
58 rabab 3469 . . . . . . . . . . . 12 {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
5958inteqi 4903 . . . . . . . . . . 11 {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}
60 vex 3442 . . . . . . . . . . . 12 𝑦 ∈ V
6137intminss 4927 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ (𝑤𝑦 ∧ Tr 𝑦)) → {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6260, 61mpan 690 . . . . . . . . . . 11 ((𝑤𝑦 ∧ Tr 𝑦) → {𝑥 ∈ V ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6359, 62eqsstrrid 3977 . . . . . . . . . 10 ((𝑤𝑦 ∧ Tr 𝑦) → {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6457, 63syl6 35 . . . . . . . . 9 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦))
6564ralrimiv 3120 . . . . . . . 8 ((𝑧𝑦 ∧ Tr 𝑦) → ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
66 iunss 4997 . . . . . . . 8 ( 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦 ↔ ∀𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
6765, 66sylibr 234 . . . . . . 7 ((𝑧𝑦 ∧ Tr 𝑦) → 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦)
68 unss 4143 . . . . . . . 8 ((𝑧𝑦 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
6968biimpi 216 . . . . . . 7 ((𝑧𝑦 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)} ⊆ 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7067, 69syldan 591 . . . . . 6 ((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7170ax-gen 1795 . . . . 5 𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)
7224, 52, 713pm3.2i 1340 . . . 4 (𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))
73 sseq2 3964 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (𝑧𝑢𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})))
74 treq 5209 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (Tr 𝑢 ↔ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)})))
75 sseq1 3963 . . . . . . . . 9 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (𝑢𝑦 ↔ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))
7675imbi2d 340 . . . . . . . 8 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)))
7776albidv 1920 . . . . . . 7 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)))
7873, 74, 773anbi123d 1438 . . . . . 6 (𝑢 = (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) → ((𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ (𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦))))
7978spcegv 3554 . . . . 5 ((𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑢(𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦))))
80 sseq2 3964 . . . . . . 7 (𝑢 = 𝑥 → (𝑧𝑢𝑧𝑥))
81 treq 5209 . . . . . . 7 (𝑢 = 𝑥 → (Tr 𝑢 ↔ Tr 𝑥))
82 sseq1 3963 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝑦𝑥𝑦))
8382imbi2d 340 . . . . . . . 8 (𝑢 = 𝑥 → (((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8483albidv 1920 . . . . . . 7 (𝑢 = 𝑥 → (∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦) ↔ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8580, 81, 843anbi123d 1438 . . . . . 6 (𝑢 = 𝑥 → ((𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ (𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8685cbvexvw 2037 . . . . 5 (∃𝑢(𝑧𝑢 ∧ Tr 𝑢 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑢𝑦)) ↔ ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8779, 86imbitrdi 251 . . . 4 ((𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∈ V → ((𝑧 ⊆ (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ Tr (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → (𝑧 𝑤𝑧 {𝑥 ∣ (𝑤𝑥 ∧ Tr 𝑥)}) ⊆ 𝑦)) → ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))))
8823, 72, 87mpisyl 21 . . 3 (∀𝑤𝑧𝑥(𝑤𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑤𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) → ∃𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
8913, 88setinds2regs 35065 . 2 𝑥(𝑧𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝑧𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
901, 7, 89vtocl 3515 1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  {crab 3396  Vcvv 3438  cun 3903  wss 3905   cuni 4861   cint 4899   ciun 4944  Tr wtr 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-regs 35060
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-sn 4580  df-pr 4582  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-tr 5203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator