Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7aN Structured version   Visualization version   GIF version

Theorem cdlemg7aN 38665
Description: TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg7.b 𝐵 = (Base‘𝐾)
cdlemg7.l = (le‘𝐾)
cdlemg7.a 𝐴 = (Atoms‘𝐾)
cdlemg7.h 𝐻 = (LHyp‘𝐾)
cdlemg7.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg7aN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)

Proof of Theorem cdlemg7aN
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ HL)
2 simp1r 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊𝐻)
3 simp2r 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
4 cdlemg7.b . . . 4 𝐵 = (Base‘𝐾)
5 cdlemg7.l . . . 4 = (le‘𝐾)
6 eqid 2733 . . . 4 (join‘𝐾) = (join‘𝐾)
7 eqid 2733 . . . 4 (meet‘𝐾) = (meet‘𝐾)
8 cdlemg7.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdlemg7.h . . . 4 𝐻 = (LHyp‘𝐾)
104, 5, 6, 7, 8, 9lhpmcvr2 38064 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
111, 2, 3, 10syl21anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
12 simp11 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simp2 1135 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑟𝐴)
14 simp3l 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ 𝑟 𝑊)
1513, 14jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
16 simp12r 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
17 simp131 1306 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐹𝑇)
18 simp132 1307 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐺𝑇)
19 simp3r 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
20 cdlemg7.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
214, 5, 6, 7, 8, 9, 20cdlemg7fvN 38664 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑋)) = ((𝐹‘(𝐺𝑟))(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
2212, 15, 16, 17, 18, 19, 21syl123anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑋)) = ((𝐹‘(𝐺𝑟))(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
23 simp12l 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
24 simp133 1308 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑃)) = 𝑃)
255, 8, 9, 20cdlemg6 38663 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑟)) = 𝑟)
2612, 23, 15, 17, 18, 24, 25syl123anc 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑟)) = 𝑟)
2726oveq1d 7310 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐹‘(𝐺𝑟))(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
2822, 27, 193eqtrd 2777 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑋)) = 𝑋)
2928rexlimdv3a 3150 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → (𝐹‘(𝐺𝑋)) = 𝑋))
3011, 29mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1537  wcel 2101  wrex 3068   class class class wbr 5077  cfv 6447  (class class class)co 7295  Basecbs 16940  lecple 16997  joincjn 18057  meetcmee 18058  Atomscatm 37303  HLchlt 37390  LHypclh 38024  LTrncltrn 38141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-riotaBAD 36993
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-1st 7851  df-2nd 7852  df-undef 8109  df-map 8637  df-proset 18041  df-poset 18059  df-plt 18076  df-lub 18092  df-glb 18093  df-join 18094  df-meet 18095  df-p0 18171  df-p1 18172  df-lat 18178  df-clat 18245  df-oposet 37216  df-ol 37218  df-oml 37219  df-covers 37306  df-ats 37307  df-atl 37338  df-cvlat 37362  df-hlat 37391  df-llines 37538  df-lplanes 37539  df-lvols 37540  df-lines 37541  df-psubsp 37543  df-pmap 37544  df-padd 37836  df-lhyp 38028  df-laut 38029  df-ldil 38144  df-ltrn 38145  df-trl 38199
This theorem is referenced by:  cdlemg7N  38666
  Copyright terms: Public domain W3C validator