Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj2 Structured version   Visualization version   GIF version

Theorem cdlemj2 39688
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑝. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b 𝐡 = (Baseβ€˜πΎ)
cdlemj.h 𝐻 = (LHypβ€˜πΎ)
cdlemj.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemj.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemj.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemj2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))

Proof of Theorem cdlemj2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)))
2 simpl2 1192 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))
3 simpl3l 1228 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”))
4 simpl3r 1229 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))
5 simpr 485 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š))
6 cdlemj.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
7 cdlemj.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
8 cdlemj.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
9 cdlemj.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
10 cdlemj.e . . . . . 6 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
11 eqid 2732 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
12 eqid 2732 . . . . . 6 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
136, 7, 8, 9, 10, 11, 12cdlemj1 39687 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š))) β†’ ((π‘ˆβ€˜β„Ž)β€˜π‘) = ((π‘‰β€˜β„Ž)β€˜π‘))
141, 2, 3, 4, 5, 13syl113anc 1382 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((π‘ˆβ€˜β„Ž)β€˜π‘) = ((π‘‰β€˜β„Ž)β€˜π‘))
1514exp32 421 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (𝑝 ∈ (Atomsβ€˜πΎ) β†’ (Β¬ 𝑝(leβ€˜πΎ)π‘Š β†’ ((π‘ˆβ€˜β„Ž)β€˜π‘) = ((π‘‰β€˜β„Ž)β€˜π‘))))
1615ralrimiv 3145 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ βˆ€π‘ ∈ (Atomsβ€˜πΎ)(Β¬ 𝑝(leβ€˜πΎ)π‘Š β†’ ((π‘ˆβ€˜β„Ž)β€˜π‘) = ((π‘‰β€˜β„Ž)β€˜π‘)))
17 simp11 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
18 simp121 1305 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ π‘ˆ ∈ 𝐸)
19 simp133 1310 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ β„Ž ∈ 𝑇)
207, 8, 10tendocl 39633 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ β„Ž ∈ 𝑇) β†’ (π‘ˆβ€˜β„Ž) ∈ 𝑇)
2117, 18, 19, 20syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (π‘ˆβ€˜β„Ž) ∈ 𝑇)
22 simp122 1306 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ 𝑉 ∈ 𝐸)
237, 8, 10tendocl 39633 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ β„Ž ∈ 𝑇) β†’ (π‘‰β€˜β„Ž) ∈ 𝑇)
2417, 22, 19, 23syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (π‘‰β€˜β„Ž) ∈ 𝑇)
2511, 12, 7, 8ltrneq 39015 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆβ€˜β„Ž) ∈ 𝑇 ∧ (π‘‰β€˜β„Ž) ∈ 𝑇) β†’ (βˆ€π‘ ∈ (Atomsβ€˜πΎ)(Β¬ 𝑝(leβ€˜πΎ)π‘Š β†’ ((π‘ˆβ€˜β„Ž)β€˜π‘) = ((π‘‰β€˜β„Ž)β€˜π‘)) ↔ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž)))
2617, 21, 24, 25syl3anc 1371 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (βˆ€π‘ ∈ (Atomsβ€˜πΎ)(Β¬ 𝑝(leβ€˜πΎ)π‘Š β†’ ((π‘ˆβ€˜β„Ž)β€˜π‘) = ((π‘‰β€˜β„Ž)β€˜π‘)) ↔ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž)))
2716, 26mpbid 231 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   class class class wbr 5148   I cid 5573   β†Ύ cres 5678  β€˜cfv 6543  Basecbs 17143  lecple 17203  Atomscatm 38128  HLchlt 38215  LHypclh 38850  LTrncltrn 38967  trLctrl 39024  TEndoctendo 39618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-riotaBAD 37818
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-undef 8257  df-map 8821  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025  df-tendo 39621
This theorem is referenced by:  cdlemj3  39689
  Copyright terms: Public domain W3C validator