MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem3 Structured version   Visualization version   GIF version

Theorem ax5seglem3 28189
Description: Lemma for ax5seg 28196. Combine congruences for points on a line. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐡,𝑖,𝑗   𝐢,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝐸,𝑗   𝑖,𝐹,𝑗   𝑖,𝑁,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem3
StepHypRef Expression
1 1re 11214 . . . . . . . . . 10 1 ∈ ℝ
2 elicc01 13443 . . . . . . . . . . 11 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≀ 𝑇 ∧ 𝑇 ≀ 1))
32simp1bi 1146 . . . . . . . . . 10 (𝑇 ∈ (0[,]1) β†’ 𝑇 ∈ ℝ)
4 resubcl 11524 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) β†’ (1 βˆ’ 𝑇) ∈ ℝ)
51, 3, 4sylancr 588 . . . . . . . . 9 (𝑇 ∈ (0[,]1) β†’ (1 βˆ’ 𝑇) ∈ ℝ)
65ad2antrr 725 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ (1 βˆ’ 𝑇) ∈ ℝ)
763ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (1 βˆ’ 𝑇) ∈ ℝ)
8 fzfid 13938 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (1...𝑁) ∈ Fin)
9 ax5seglem3a 28188 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ 𝑗 ∈ (1...𝑁)) β†’ (((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—)) ∈ ℝ ∧ ((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—)) ∈ ℝ))
109simpld 496 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ 𝑗 ∈ (1...𝑁)) β†’ ((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—)) ∈ ℝ)
1110resqcld 14090 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ 𝑗 ∈ (1...𝑁)) β†’ (((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) ∈ ℝ)
128, 11fsumrecl 15680 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) ∈ ℝ)
1310sqge0d 14102 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ 𝑗 ∈ (1...𝑁)) β†’ 0 ≀ (((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))
148, 11, 13fsumge0 15741 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 0 ≀ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))
1512, 14resqrtcld 15364 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) ∈ ℝ)
16153ad2ant1 1134 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) ∈ ℝ)
177, 16remulcld 11244 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((1 βˆ’ 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) ∈ ℝ)
18 elicc01 13443 . . . . . . . . . . 11 (𝑆 ∈ (0[,]1) ↔ (𝑆 ∈ ℝ ∧ 0 ≀ 𝑆 ∧ 𝑆 ≀ 1))
1918simp1bi 1146 . . . . . . . . . 10 (𝑆 ∈ (0[,]1) β†’ 𝑆 ∈ ℝ)
20 resubcl 11524 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑆 ∈ ℝ) β†’ (1 βˆ’ 𝑆) ∈ ℝ)
211, 19, 20sylancr 588 . . . . . . . . 9 (𝑆 ∈ (0[,]1) β†’ (1 βˆ’ 𝑆) ∈ ℝ)
2221ad2antlr 726 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ (1 βˆ’ 𝑆) ∈ ℝ)
23223ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (1 βˆ’ 𝑆) ∈ ℝ)
249simprd 497 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ 𝑗 ∈ (1...𝑁)) β†’ ((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—)) ∈ ℝ)
2524resqcld 14090 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ 𝑗 ∈ (1...𝑁)) β†’ (((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2) ∈ ℝ)
268, 25fsumrecl 15680 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2) ∈ ℝ)
2724sqge0d 14102 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ 𝑗 ∈ (1...𝑁)) β†’ 0 ≀ (((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
288, 25, 27fsumge0 15741 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 0 ≀ Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
2926, 28resqrtcld 15364 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) ∈ ℝ)
30293ad2ant1 1134 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) ∈ ℝ)
3123, 30remulcld 11244 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) ∈ ℝ)
322simp3bi 1148 . . . . . . . . . 10 (𝑇 ∈ (0[,]1) β†’ 𝑇 ≀ 1)
33 subge0 11727 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) β†’ (0 ≀ (1 βˆ’ 𝑇) ↔ 𝑇 ≀ 1))
341, 3, 33sylancr 588 . . . . . . . . . 10 (𝑇 ∈ (0[,]1) β†’ (0 ≀ (1 βˆ’ 𝑇) ↔ 𝑇 ≀ 1))
3532, 34mpbird 257 . . . . . . . . 9 (𝑇 ∈ (0[,]1) β†’ 0 ≀ (1 βˆ’ 𝑇))
3635ad2antrr 725 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 0 ≀ (1 βˆ’ 𝑇))
37363ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ (1 βˆ’ 𝑇))
3812, 14sqrtge0d 15367 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 0 ≀ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
39383ad2ant1 1134 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
407, 16, 37, 39mulge0d 11791 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ ((1 βˆ’ 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))))
4118simp3bi 1148 . . . . . . . . . 10 (𝑆 ∈ (0[,]1) β†’ 𝑆 ≀ 1)
42 subge0 11727 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑆 ∈ ℝ) β†’ (0 ≀ (1 βˆ’ 𝑆) ↔ 𝑆 ≀ 1))
431, 19, 42sylancr 588 . . . . . . . . . 10 (𝑆 ∈ (0[,]1) β†’ (0 ≀ (1 βˆ’ 𝑆) ↔ 𝑆 ≀ 1))
4441, 43mpbird 257 . . . . . . . . 9 (𝑆 ∈ (0[,]1) β†’ 0 ≀ (1 βˆ’ 𝑆))
4544ad2antlr 726 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 0 ≀ (1 βˆ’ 𝑆))
46453ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ (1 βˆ’ 𝑆))
4726, 28sqrtge0d 15367 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 0 ≀ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
48473ad2ant1 1134 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
4923, 30, 46, 48mulge0d 11791 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ ((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
50 resqrtth 15202 . . . . . . . . . 10 ((Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) ∈ ℝ ∧ 0 ≀ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2) = Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))
5112, 14, 50syl2anc 585 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2) = Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))
52513ad2ant1 1134 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2) = Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))
5352oveq2d 7425 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇)↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2)) = (((1 βˆ’ 𝑇)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
54 ax-1cn 11168 . . . . . . . . 9 1 ∈ β„‚
553recnd 11242 . . . . . . . . . . 11 (𝑇 ∈ (0[,]1) β†’ 𝑇 ∈ β„‚)
5655ad2antrr 725 . . . . . . . . . 10 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 𝑇 ∈ β„‚)
57563ad2ant2 1135 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝑇 ∈ β„‚)
58 subcl 11459 . . . . . . . . 9 ((1 ∈ β„‚ ∧ 𝑇 ∈ β„‚) β†’ (1 βˆ’ 𝑇) ∈ β„‚)
5954, 57, 58sylancr 588 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (1 βˆ’ 𝑇) ∈ β„‚)
6015recnd 11242 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) ∈ β„‚)
61603ad2ant1 1134 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) ∈ β„‚)
6259, 61sqmuld 14123 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))↑2) = (((1 βˆ’ 𝑇)↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2)))
63 resqrtth 15202 . . . . . . . . . . 11 ((Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2) ∈ ℝ ∧ 0 ≀ Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
6426, 28, 63syl2anc 585 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
65643ad2ant1 1134 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
6665oveq2d 7425 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑆)↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))↑2)) = (((1 βˆ’ 𝑆)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
6719recnd 11242 . . . . . . . . . . . 12 (𝑆 ∈ (0[,]1) β†’ 𝑆 ∈ β„‚)
6867ad2antlr 726 . . . . . . . . . . 11 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 𝑆 ∈ β„‚)
69683ad2ant2 1135 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝑆 ∈ β„‚)
70 subcl 11459 . . . . . . . . . 10 ((1 ∈ β„‚ ∧ 𝑆 ∈ β„‚) β†’ (1 βˆ’ 𝑆) ∈ β„‚)
7154, 69, 70sylancr 588 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (1 βˆ’ 𝑆) ∈ β„‚)
7229recnd 11242 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) ∈ β„‚)
73723ad2ant1 1134 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) ∈ β„‚)
7471, 73sqmuld 14123 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))↑2) = (((1 βˆ’ 𝑆)↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))↑2)))
75 simp3r 1203 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)
76 simp122 1307 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
77 simp123 1308 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
78 simp132 1310 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
79 simp133 1311 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝐹 ∈ (π”Όβ€˜π‘))
80 brcgr 28158 . . . . . . . . . . 11 (((𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((π΅β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((πΈβ€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
8176, 77, 78, 79, 80syl22anc 838 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((π΅β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((πΈβ€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
8275, 81mpbid 231 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((π΅β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((πΈβ€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
83 simp11 1204 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝑁 ∈ β„•)
84 simp121 1306 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
85 simp2ll 1241 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝑇 ∈ (0[,]1))
86 simp2rl 1243 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))))
87 ax5seglem2 28187 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝑇 ∈ (0[,]1) ∧ βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))))) β†’ Σ𝑗 ∈ (1...𝑁)(((π΅β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = (((1 βˆ’ 𝑇)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
8883, 84, 77, 85, 86, 87syl122anc 1380 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((π΅β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = (((1 βˆ’ 𝑇)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
89 simp131 1309 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝐷 ∈ (π”Όβ€˜π‘))
90 simp2lr 1242 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝑆 ∈ (0[,]1))
91 simp2rr 1244 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))
92 ax5seglem2 28187 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘)) ∧ (𝑆 ∈ (0[,]1) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ Σ𝑗 ∈ (1...𝑁)(((πΈβ€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2) = (((1 βˆ’ 𝑆)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
9383, 89, 79, 90, 91, 92syl122anc 1380 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((πΈβ€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2) = (((1 βˆ’ 𝑆)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
9482, 88, 933eqtr3d 2781 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) = (((1 βˆ’ 𝑆)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
9566, 74, 943eqtr4d 2783 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))↑2) = (((1 βˆ’ 𝑇)↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
9653, 62, 953eqtr4d 2783 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))↑2) = (((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))↑2))
9717, 31, 40, 49, 96sq11d 14221 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((1 βˆ’ 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = ((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
983ad2antrr 725 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 𝑇 ∈ ℝ)
99983ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝑇 ∈ ℝ)
10099, 16remulcld 11244 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (𝑇 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) ∈ ℝ)
10119ad2antlr 726 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 𝑆 ∈ ℝ)
1021013ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 𝑆 ∈ ℝ)
103102, 30remulcld 11244 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) ∈ ℝ)
1042simp2bi 1147 . . . . . . . . 9 (𝑇 ∈ (0[,]1) β†’ 0 ≀ 𝑇)
105104ad2antrr 725 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 0 ≀ 𝑇)
1061053ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ 𝑇)
10799, 16, 106, 39mulge0d 11791 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ (𝑇 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))))
10818simp2bi 1147 . . . . . . . . 9 (𝑆 ∈ (0[,]1) β†’ 0 ≀ 𝑆)
109108ad2antlr 726 . . . . . . . 8 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ 0 ≀ 𝑆)
1101093ad2ant2 1135 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ 𝑆)
111102, 30, 110, 48mulge0d 11791 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ 0 ≀ (𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
11251oveq2d 7425 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((𝑇↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2)) = ((𝑇↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
1131123ad2ant1 1134 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((𝑇↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2)) = ((𝑇↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
11457, 61sqmuld 14123 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((𝑇 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))↑2) = ((𝑇↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))↑2)))
11565oveq2d 7425 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((𝑆↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))↑2)) = ((𝑆↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
11669, 73sqmuld 14123 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))↑2) = ((𝑆↑2) Β· ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))↑2)))
117 simp3l 1202 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)
118 brcgr 28158 . . . . . . . . . . 11 (((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (π΅β€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΈβ€˜π‘—))↑2)))
11984, 76, 89, 78, 118syl22anc 838 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (π΅β€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΈβ€˜π‘—))↑2)))
120117, 119mpbid 231 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (π΅β€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΈβ€˜π‘—))↑2))
121 ax5seglem1 28186 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝑇 ∈ (0[,]1) ∧ βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))))) β†’ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (π΅β€˜π‘—))↑2) = ((𝑇↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
12283, 84, 77, 85, 86, 121syl122anc 1380 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (π΅β€˜π‘—))↑2) = ((𝑇↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
123 ax5seglem1 28186 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘)) ∧ (𝑆 ∈ (0[,]1) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΈβ€˜π‘—))↑2) = ((𝑆↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
12483, 89, 79, 90, 91, 123syl122anc 1380 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΈβ€˜π‘—))↑2) = ((𝑆↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
125120, 122, 1243eqtr3d 2781 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((𝑇↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) = ((𝑆↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
126115, 116, 1253eqtr4d 2783 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))↑2) = ((𝑇↑2) Β· Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
127113, 114, 1263eqtr4d 2783 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((𝑇 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))↑2) = ((𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))↑2))
128100, 103, 107, 111, 127sq11d 14221 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (𝑇 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
12997, 128oveq12d 7427 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) + (𝑇 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))) = (((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) + (𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))))
13059, 57, 61adddird 11239 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇) + 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (((1 βˆ’ 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) + (𝑇 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))))
13171, 69, 73adddird 11239 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑆) + 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) = (((1 βˆ’ 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) + (𝑆 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))))
132129, 130, 1313eqtr4d 2783 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇) + 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (((1 βˆ’ 𝑆) + 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
133 npcan 11469 . . . . . . . . 9 ((1 ∈ β„‚ ∧ 𝑇 ∈ β„‚) β†’ ((1 βˆ’ 𝑇) + 𝑇) = 1)
13454, 55, 133sylancr 588 . . . . . . . 8 (𝑇 ∈ (0[,]1) β†’ ((1 βˆ’ 𝑇) + 𝑇) = 1)
135134adantr 482 . . . . . . 7 ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) β†’ ((1 βˆ’ 𝑇) + 𝑇) = 1)
136135oveq1d 7424 . . . . . 6 ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) β†’ (((1 βˆ’ 𝑇) + 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))))
137136adantr 482 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ (((1 βˆ’ 𝑇) + 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))))
1381373ad2ant2 1135 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇) + 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))))
13960mullidd 11232 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
1401393ad2ant1 1134 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
141138, 140eqtrd 2773 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑇) + 𝑇) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2))) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)))
142 npcan 11469 . . . . . . . 8 ((1 ∈ β„‚ ∧ 𝑆 ∈ β„‚) β†’ ((1 βˆ’ 𝑆) + 𝑆) = 1)
14354, 67, 142sylancr 588 . . . . . . 7 (𝑆 ∈ (0[,]1) β†’ ((1 βˆ’ 𝑆) + 𝑆) = 1)
144143oveq1d 7424 . . . . . 6 (𝑆 ∈ (0[,]1) β†’ (((1 βˆ’ 𝑆) + 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) = (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
145144ad2antlr 726 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) β†’ (((1 βˆ’ 𝑆) + 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) = (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
1461453ad2ant2 1135 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑆) + 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) = (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))))
14772mullidd 11232 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
1481473ad2ant1 1134 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (1 Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
149146, 148eqtrd 2773 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (((1 βˆ’ 𝑆) + 𝑆) Β· (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
150132, 141, 1493eqtr3d 2781 . 2 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
151 sqrt11 15209 . . . 4 (((Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) ∈ ℝ ∧ 0 ≀ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) ∧ (Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2) ∈ ℝ ∧ 0 ≀ Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) ↔ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
15212, 14, 26, 28, 151syl22anc 838 . . 3 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) ↔ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
1531523ad2ant1 1134 . 2 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ ((βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2)) = (βˆšβ€˜Ξ£π‘— ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)) ↔ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2)))
154150, 153mpbid 231 1 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (βˆ€π‘– ∈ (1...𝑁)(π΅β€˜π‘–) = (((1 βˆ’ 𝑇) Β· (π΄β€˜π‘–)) + (𝑇 Β· (πΆβ€˜π‘–))) ∧ βˆ€π‘– ∈ (1...𝑁)(πΈβ€˜π‘–) = (((1 βˆ’ 𝑆) Β· (π·β€˜π‘–)) + (𝑆 Β· (πΉβ€˜π‘–))))) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, 𝐹⟩)) β†’ Σ𝑗 ∈ (1...𝑁)(((π΄β€˜π‘—) βˆ’ (πΆβ€˜π‘—))↑2) = Σ𝑗 ∈ (1...𝑁)(((π·β€˜π‘—) βˆ’ (πΉβ€˜π‘—))↑2))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βŸ¨cop 4635   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  β„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   Β· cmul 11115   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  2c2 12267  [,]cicc 13327  ...cfz 13484  β†‘cexp 14027  βˆšcsqrt 15180  Ξ£csu 15632  π”Όcee 28146  Cgrccgr 28148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-ee 28149  df-cgr 28151
This theorem is referenced by:  ax5seglem6  28192  ax5seg  28196
  Copyright terms: Public domain W3C validator