![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp32 1210 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ax5seglem3 28964 3atlem1 39440 3atlem2 39441 3atlem5 39444 2llnjaN 39523 4atlem11b 39565 4atlem12b 39568 lplncvrlvol2 39572 dalemtea 39587 dath2 39694 cdlemblem 39750 dalawlem1 39828 lhpexle3lem 39968 4atexlemex6 40031 cdleme22f2 40304 cdleme22g 40305 cdlemg7aN 40582 cdlemg34 40669 cdlemj1 40778 cdlemk23-3 40859 cdlemk25-3 40861 cdlemk26b-3 40862 |
Copyright terms: Public domain | W3C validator |