Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp32 1211 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
2 | 1 | 3ad2ant1 1134 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: ax5seglem3 26877 3atlem1 37140 3atlem2 37141 3atlem5 37144 2llnjaN 37223 4atlem11b 37265 4atlem12b 37268 lplncvrlvol2 37272 dalemtea 37287 dath2 37394 cdlemblem 37450 dalawlem1 37528 lhpexle3lem 37668 4atexlemex6 37731 cdleme22f2 38004 cdleme22g 38005 cdlemg7aN 38282 cdlemg34 38369 cdlemj1 38478 cdlemk23-3 38559 cdlemk25-3 38561 cdlemk26b-3 38562 |
Copyright terms: Public domain | W3C validator |