Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp32 1209 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ax5seglem3 27299 3atlem1 37497 3atlem2 37498 3atlem5 37501 2llnjaN 37580 4atlem11b 37622 4atlem12b 37625 lplncvrlvol2 37629 dalemtea 37644 dath2 37751 cdlemblem 37807 dalawlem1 37885 lhpexle3lem 38025 4atexlemex6 38088 cdleme22f2 38361 cdleme22g 38362 cdlemg7aN 38639 cdlemg34 38726 cdlemj1 38835 cdlemk23-3 38916 cdlemk25-3 38918 cdlemk26b-3 38919 |
Copyright terms: Public domain | W3C validator |