MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp132 Structured version   Visualization version   GIF version

Theorem simp132 1309
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp132 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp132
StepHypRef Expression
1 simp32 1210 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28947  3atlem1  39486  3atlem2  39487  3atlem5  39490  2llnjaN  39569  4atlem11b  39611  4atlem12b  39614  lplncvrlvol2  39618  dalemtea  39633  dath2  39740  cdlemblem  39796  dalawlem1  39874  lhpexle3lem  40014  4atexlemex6  40077  cdleme22f2  40350  cdleme22g  40351  cdlemg7aN  40628  cdlemg34  40715  cdlemj1  40824  cdlemk23-3  40905  cdlemk25-3  40907  cdlemk26b-3  40908
  Copyright terms: Public domain W3C validator