Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp132 Structured version   Visualization version   GIF version

Theorem simp132 1303
 Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp132 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp132
StepHypRef Expression
1 simp32 1204 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant1 1127 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1083 This theorem is referenced by:  ax5seglem3  26634  3atlem1  36489  3atlem2  36490  3atlem5  36493  2llnjaN  36572  4atlem11b  36614  4atlem12b  36617  lplncvrlvol2  36621  dalemtea  36636  dath2  36743  cdlemblem  36799  dalawlem1  36877  lhpexle3lem  37017  4atexlemex6  37080  cdleme22f2  37353  cdleme22g  37354  cdlemg7aN  37631  cdlemg34  37718  cdlemj1  37827  cdlemk23-3  37908  cdlemk25-3  37910  cdlemk26b-3  37911
 Copyright terms: Public domain W3C validator