![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp32 1268 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
2 | 1 | 3ad2ant1 1164 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: ax5seglem3 26168 3atlem1 35504 3atlem2 35505 3atlem5 35508 2llnjaN 35587 4atlem11b 35629 4atlem12b 35632 lplncvrlvol2 35636 dalemtea 35651 dath2 35758 cdlemblem 35814 dalawlem1 35892 lhpexle3lem 36032 4atexlemex6 36095 cdleme22f2 36368 cdleme22g 36369 cdlemg7aN 36646 cdlemg34 36733 cdlemj1 36842 cdlemk23-3 36923 cdlemk25-3 36925 cdlemk26b-3 36926 |
Copyright terms: Public domain | W3C validator |