MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp132 Structured version   Visualization version   GIF version

Theorem simp132 1310
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp132 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp132
StepHypRef Expression
1 simp32 1211 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant1 1134 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090
This theorem is referenced by:  ax5seglem3  26877  3atlem1  37140  3atlem2  37141  3atlem5  37144  2llnjaN  37223  4atlem11b  37265  4atlem12b  37268  lplncvrlvol2  37272  dalemtea  37287  dath2  37394  cdlemblem  37450  dalawlem1  37528  lhpexle3lem  37668  4atexlemex6  37731  cdleme22f2  38004  cdleme22g  38005  cdlemg7aN  38282  cdlemg34  38369  cdlemj1  38478  cdlemk23-3  38559  cdlemk25-3  38561  cdlemk26b-3  38562
  Copyright terms: Public domain W3C validator