MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp132 Structured version   Visualization version   GIF version

Theorem simp132 1310
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp132 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp132
StepHypRef Expression
1 simp32 1211 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28858  3atlem1  39477  3atlem2  39478  3atlem5  39481  2llnjaN  39560  4atlem11b  39602  4atlem12b  39605  lplncvrlvol2  39609  dalemtea  39624  dath2  39731  cdlemblem  39787  dalawlem1  39865  lhpexle3lem  40005  4atexlemex6  40068  cdleme22f2  40341  cdleme22g  40342  cdlemg7aN  40619  cdlemg34  40706  cdlemj1  40815  cdlemk23-3  40896  cdlemk25-3  40898  cdlemk26b-3  40899
  Copyright terms: Public domain W3C validator