| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp32 1211 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28858 3atlem1 39477 3atlem2 39478 3atlem5 39481 2llnjaN 39560 4atlem11b 39602 4atlem12b 39605 lplncvrlvol2 39609 dalemtea 39624 dath2 39731 cdlemblem 39787 dalawlem1 39865 lhpexle3lem 40005 4atexlemex6 40068 cdleme22f2 40341 cdleme22g 40342 cdlemg7aN 40619 cdlemg34 40706 cdlemj1 40815 cdlemk23-3 40896 cdlemk25-3 40898 cdlemk26b-3 40899 |
| Copyright terms: Public domain | W3C validator |