| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp32 1211 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28894 3atlem1 39462 3atlem2 39463 3atlem5 39466 2llnjaN 39545 4atlem11b 39587 4atlem12b 39590 lplncvrlvol2 39594 dalemtea 39609 dath2 39716 cdlemblem 39772 dalawlem1 39850 lhpexle3lem 39990 4atexlemex6 40053 cdleme22f2 40326 cdleme22g 40327 cdlemg7aN 40604 cdlemg34 40691 cdlemj1 40800 cdlemk23-3 40881 cdlemk25-3 40883 cdlemk26b-3 40884 |
| Copyright terms: Public domain | W3C validator |