| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp32 1211 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28910 3atlem1 39528 3atlem2 39529 3atlem5 39532 2llnjaN 39611 4atlem11b 39653 4atlem12b 39656 lplncvrlvol2 39660 dalemtea 39675 dath2 39782 cdlemblem 39838 dalawlem1 39916 lhpexle3lem 40056 4atexlemex6 40119 cdleme22f2 40392 cdleme22g 40393 cdlemg7aN 40670 cdlemg34 40757 cdlemj1 40866 cdlemk23-3 40947 cdlemk25-3 40949 cdlemk26b-3 40950 |
| Copyright terms: Public domain | W3C validator |