Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exatleN Structured version   Visualization version   GIF version

Theorem exatleN 38742
Description: A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atomle.b 𝐡 = (Baseβ€˜πΎ)
atomle.l ≀ = (leβ€˜πΎ)
atomle.j ∨ = (joinβ€˜πΎ)
atomle.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
exatleN (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ 𝑋 ↔ 𝑅 = 𝑃))

Proof of Theorem exatleN
StepHypRef Expression
1 simpl32 1254 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃) β†’ Β¬ 𝑄 ≀ 𝑋)
2 atomle.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
3 atomle.l . . . . . . 7 ≀ = (leβ€˜πΎ)
4 simp11l 1283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ HL)
54hllatd 38701 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝐾 ∈ Lat)
6 simp122 1305 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑄 ∈ 𝐴)
7 atomle.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
82, 7atbase 38626 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
96, 8syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑄 ∈ 𝐡)
10 simp121 1304 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑃 ∈ 𝐴)
112, 7atbase 38626 . . . . . . . . 9 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
1210, 11syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑃 ∈ 𝐡)
13 simp123 1306 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ∈ 𝐴)
142, 7atbase 38626 . . . . . . . . 9 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ 𝐡)
1513, 14syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ∈ 𝐡)
16 atomle.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
172, 16latjcl 18402 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑅 ∈ 𝐡) β†’ (𝑃 ∨ 𝑅) ∈ 𝐡)
185, 12, 15, 17syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ (𝑃 ∨ 𝑅) ∈ 𝐡)
19 simp11r 1284 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑋 ∈ 𝐡)
2013, 6, 103jca 1127 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴))
21 simp2 1136 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 β‰  𝑃)
224, 20, 213jca 1127 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ (𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 β‰  𝑃))
23 simp133 1309 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
243, 16, 7hlatexch1 38733 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 β‰  𝑃) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) β†’ 𝑄 ≀ (𝑃 ∨ 𝑅)))
2522, 23, 24sylc 65 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑄 ≀ (𝑃 ∨ 𝑅))
26 simp131 1307 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑃 ≀ 𝑋)
27 simp3 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑅 ≀ 𝑋)
282, 3, 16latjle12 18413 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ 𝑅 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑃 ≀ 𝑋 ∧ 𝑅 ≀ 𝑋) ↔ (𝑃 ∨ 𝑅) ≀ 𝑋))
295, 12, 15, 19, 28syl13anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ ((𝑃 ≀ 𝑋 ∧ 𝑅 ≀ 𝑋) ↔ (𝑃 ∨ 𝑅) ≀ 𝑋))
3026, 27, 29mpbi2and 709 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ (𝑃 ∨ 𝑅) ≀ 𝑋)
312, 3, 5, 9, 18, 19, 25, 30lattrd 18409 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃 ∧ 𝑅 ≀ 𝑋) β†’ 𝑄 ≀ 𝑋)
32313expia 1120 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃) β†’ (𝑅 ≀ 𝑋 β†’ 𝑄 ≀ 𝑋))
331, 32mtod 197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑅 β‰  𝑃) β†’ Β¬ 𝑅 ≀ 𝑋)
3433ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 β‰  𝑃 β†’ Β¬ 𝑅 ≀ 𝑋))
3534necon4ad 2958 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ 𝑋 β†’ 𝑅 = 𝑃))
36 simp31 1208 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ≀ 𝑋)
37 breq1 5151 . . 3 (𝑅 = 𝑃 β†’ (𝑅 ≀ 𝑋 ↔ 𝑃 ≀ 𝑋))
3836, 37syl5ibrcom 246 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 = 𝑃 β†’ 𝑅 ≀ 𝑋))
3935, 38impbid 211 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ 𝑋 ↔ 𝑅 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  lecple 17211  joincjn 18274  Latclat 18394  Atomscatm 38600  HLchlt 38687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-lat 18395  df-covers 38603  df-ats 38604  df-atl 38635  df-cvlat 38659  df-hlat 38688
This theorem is referenced by:  cdlema2N  39130
  Copyright terms: Public domain W3C validator