Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exatleN Structured version   Visualization version   GIF version

Theorem exatleN 37414
Description: A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atomle.b 𝐵 = (Base‘𝐾)
atomle.l = (le‘𝐾)
atomle.j = (join‘𝐾)
atomle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
exatleN (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))

Proof of Theorem exatleN
StepHypRef Expression
1 simpl32 1254 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃) → ¬ 𝑄 𝑋)
2 atomle.b . . . . . . 7 𝐵 = (Base‘𝐾)
3 atomle.l . . . . . . 7 = (le‘𝐾)
4 simp11l 1283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝐾 ∈ HL)
54hllatd 37374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝐾 ∈ Lat)
6 simp122 1305 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄𝐴)
7 atomle.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
82, 7atbase 37299 . . . . . . . 8 (𝑄𝐴𝑄𝐵)
96, 8syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄𝐵)
10 simp121 1304 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑃𝐴)
112, 7atbase 37299 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
1210, 11syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑃𝐵)
13 simp123 1306 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅𝐴)
142, 7atbase 37299 . . . . . . . . 9 (𝑅𝐴𝑅𝐵)
1513, 14syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅𝐵)
16 atomle.j . . . . . . . . 9 = (join‘𝐾)
172, 16latjcl 18155 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
185, 12, 15, 17syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝑃 𝑅) ∈ 𝐵)
19 simp11r 1284 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑋𝐵)
2013, 6, 103jca 1127 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝑅𝐴𝑄𝐴𝑃𝐴))
21 simp2 1136 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅𝑃)
224, 20, 213jca 1127 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃))
23 simp133 1309 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅 (𝑃 𝑄))
243, 16, 7hlatexch1 37405 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃) → (𝑅 (𝑃 𝑄) → 𝑄 (𝑃 𝑅)))
2522, 23, 24sylc 65 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄 (𝑃 𝑅))
26 simp131 1307 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑃 𝑋)
27 simp3 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅 𝑋)
282, 3, 16latjle12 18166 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑅𝐵𝑋𝐵)) → ((𝑃 𝑋𝑅 𝑋) ↔ (𝑃 𝑅) 𝑋))
295, 12, 15, 19, 28syl13anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → ((𝑃 𝑋𝑅 𝑋) ↔ (𝑃 𝑅) 𝑋))
3026, 27, 29mpbi2and 709 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝑃 𝑅) 𝑋)
312, 3, 5, 9, 18, 19, 25, 30lattrd 18162 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄 𝑋)
32313expia 1120 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃) → (𝑅 𝑋𝑄 𝑋))
331, 32mtod 197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃) → ¬ 𝑅 𝑋)
3433ex 413 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 → ¬ 𝑅 𝑋))
3534necon4ad 2964 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
36 simp31 1208 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → 𝑃 𝑋)
37 breq1 5082 . . 3 (𝑅 = 𝑃 → (𝑅 𝑋𝑃 𝑋))
3836, 37syl5ibrcom 246 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 = 𝑃𝑅 𝑋))
3935, 38impbid 211 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  (class class class)co 7271  Basecbs 16910  lecple 16967  joincjn 18027  Latclat 18147  Atomscatm 37273  HLchlt 37360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-lat 18148  df-covers 37276  df-ats 37277  df-atl 37308  df-cvlat 37332  df-hlat 37361
This theorem is referenced by:  cdlema2N  37802
  Copyright terms: Public domain W3C validator