Proof of Theorem exatleN
Step | Hyp | Ref
| Expression |
1 | | simpl32 1253 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃) → ¬ 𝑄 ≤ 𝑋) |
2 | | atomle.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
3 | | atomle.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
4 | | simp11l 1282 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ HL) |
5 | 4 | hllatd 37305 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝐾 ∈ Lat) |
6 | | simp122 1304 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑄 ∈ 𝐴) |
7 | | atomle.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 2, 7 | atbase 37230 |
. . . . . . . 8
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
9 | 6, 8 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑄 ∈ 𝐵) |
10 | | simp121 1303 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
11 | 2, 7 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
13 | | simp123 1305 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑅 ∈ 𝐴) |
14 | 2, 7 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑅 ∈ 𝐵) |
16 | | atomle.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
17 | 2, 16 | latjcl 18072 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵) → (𝑃 ∨ 𝑅) ∈ 𝐵) |
18 | 5, 12, 15, 17 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → (𝑃 ∨ 𝑅) ∈ 𝐵) |
19 | | simp11r 1283 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
20 | 13, 6, 10 | 3jca 1126 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) |
21 | | simp2 1135 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑅 ≠ 𝑃) |
22 | 4, 20, 21 | 3jca 1126 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → (𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ≠ 𝑃)) |
23 | | simp133 1308 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
24 | 3, 16, 7 | hlatexch1 37336 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ≠ 𝑃) → (𝑅 ≤ (𝑃 ∨ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
25 | 22, 23, 24 | sylc 65 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑅)) |
26 | | simp131 1306 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑃 ≤ 𝑋) |
27 | | simp3 1136 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑅 ≤ 𝑋) |
28 | 2, 3, 16 | latjle12 18083 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃 ≤ 𝑋 ∧ 𝑅 ≤ 𝑋) ↔ (𝑃 ∨ 𝑅) ≤ 𝑋)) |
29 | 5, 12, 15, 19, 28 | syl13anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → ((𝑃 ≤ 𝑋 ∧ 𝑅 ≤ 𝑋) ↔ (𝑃 ∨ 𝑅) ≤ 𝑋)) |
30 | 26, 27, 29 | mpbi2and 708 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → (𝑃 ∨ 𝑅) ≤ 𝑋) |
31 | 2, 3, 5, 9, 18, 19, 25, 30 | lattrd 18079 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ 𝑋) → 𝑄 ≤ 𝑋) |
32 | 31 | 3expia 1119 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃) → (𝑅 ≤ 𝑋 → 𝑄 ≤ 𝑋)) |
33 | 1, 32 | mtod 197 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑅 ≠ 𝑃) → ¬ 𝑅 ≤ 𝑋) |
34 | 33 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 → ¬ 𝑅 ≤ 𝑋)) |
35 | 34 | necon4ad 2961 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ 𝑋 → 𝑅 = 𝑃)) |
36 | | simp31 1207 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≤ 𝑋) |
37 | | breq1 5073 |
. . 3
⊢ (𝑅 = 𝑃 → (𝑅 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋)) |
38 | 36, 37 | syl5ibrcom 246 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 = 𝑃 → 𝑅 ≤ 𝑋)) |
39 | 35, 38 | impbid 211 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ 𝑋 ↔ 𝑅 = 𝑃)) |