Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exatleN Structured version   Visualization version   GIF version

Theorem exatleN 36576
Description: A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atomle.b 𝐵 = (Base‘𝐾)
atomle.l = (le‘𝐾)
atomle.j = (join‘𝐾)
atomle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
exatleN (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))

Proof of Theorem exatleN
StepHypRef Expression
1 simpl32 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃) → ¬ 𝑄 𝑋)
2 atomle.b . . . . . . 7 𝐵 = (Base‘𝐾)
3 atomle.l . . . . . . 7 = (le‘𝐾)
4 simp11l 1280 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝐾 ∈ HL)
54hllatd 36536 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝐾 ∈ Lat)
6 simp122 1302 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄𝐴)
7 atomle.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
82, 7atbase 36461 . . . . . . . 8 (𝑄𝐴𝑄𝐵)
96, 8syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄𝐵)
10 simp121 1301 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑃𝐴)
112, 7atbase 36461 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
1210, 11syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑃𝐵)
13 simp123 1303 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅𝐴)
142, 7atbase 36461 . . . . . . . . 9 (𝑅𝐴𝑅𝐵)
1513, 14syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅𝐵)
16 atomle.j . . . . . . . . 9 = (join‘𝐾)
172, 16latjcl 17640 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
185, 12, 15, 17syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝑃 𝑅) ∈ 𝐵)
19 simp11r 1281 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑋𝐵)
2013, 6, 103jca 1124 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝑅𝐴𝑄𝐴𝑃𝐴))
21 simp2 1133 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅𝑃)
224, 20, 213jca 1124 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃))
23 simp133 1306 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅 (𝑃 𝑄))
243, 16, 7hlatexch1 36567 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃) → (𝑅 (𝑃 𝑄) → 𝑄 (𝑃 𝑅)))
2522, 23, 24sylc 65 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄 (𝑃 𝑅))
26 simp131 1304 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑃 𝑋)
27 simp3 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑅 𝑋)
282, 3, 16latjle12 17651 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑅𝐵𝑋𝐵)) → ((𝑃 𝑋𝑅 𝑋) ↔ (𝑃 𝑅) 𝑋))
295, 12, 15, 19, 28syl13anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → ((𝑃 𝑋𝑅 𝑋) ↔ (𝑃 𝑅) 𝑋))
3026, 27, 29mpbi2and 710 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → (𝑃 𝑅) 𝑋)
312, 3, 5, 9, 18, 19, 25, 30lattrd 17647 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃𝑅 𝑋) → 𝑄 𝑋)
32313expia 1117 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃) → (𝑅 𝑋𝑄 𝑋))
331, 32mtod 200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) ∧ 𝑅𝑃) → ¬ 𝑅 𝑋)
3433ex 415 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 → ¬ 𝑅 𝑋))
3534necon4ad 3025 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
36 simp31 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → 𝑃 𝑋)
37 breq1 5045 . . 3 (𝑅 = 𝑃 → (𝑅 𝑋𝑃 𝑋))
3836, 37syl5ibrcom 249 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 = 𝑃𝑅 𝑋))
3935, 38impbid 214 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3006   class class class wbr 5042  cfv 6331  (class class class)co 7133  Basecbs 16462  lecple 16551  joincjn 17533  Latclat 17634  Atomscatm 36435  HLchlt 36522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-lat 17635  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523
This theorem is referenced by:  cdlema2N  36964
  Copyright terms: Public domain W3C validator