Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem2 Structured version   Visualization version   GIF version

Theorem 3atlem2 39087
Description: Lemma for 3at 39093. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3atlem2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))

Proof of Theorem 3atlem2
StepHypRef Expression
1 simp3 1135 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))
2 simp11 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ HL)
32hllatd 38966 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ Lat)
4 simp121 1302 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝐴)
5 simp122 1303 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄𝐴)
6 eqid 2725 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
7 3at.j . . . . . . . . 9 = (join‘𝐾)
8 3at.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 38969 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp123 1304 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅𝐴)
126, 8atbase 38891 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ∈ (Base‘𝐾))
14 simp131 1305 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑆𝐴)
15 simp132 1306 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇𝐴)
166, 7, 8hlatjcl 38969 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
172, 14, 15, 16syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 𝑇) ∈ (Base‘𝐾))
18 simp133 1307 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈𝐴)
196, 8atbase 38891 . . . . . . . . 9 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈 ∈ (Base‘𝐾))
216, 7latjcl 18434 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
223, 17, 20, 21syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
23 3at.l . . . . . . . 8 = (le‘𝐾)
246, 23, 7latjle12 18445 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
253, 10, 13, 22, 24syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
261, 25mpbird 256 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)))
2726simprd 494 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ((𝑆 𝑇) 𝑈))
287, 8hlatjass 38972 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
292, 14, 15, 18, 28syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
30 simp22r 1290 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 (𝑇 𝑈))
31 simp22l 1289 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝑈)
3223, 7, 8hlatexchb2 38997 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑇𝐴𝑈𝐴) ∧ 𝑃𝑈) → (𝑃 (𝑇 𝑈) ↔ (𝑃 𝑈) = (𝑇 𝑈)))
332, 4, 15, 18, 31, 32syl131anc 1380 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈) ↔ (𝑃 𝑈) = (𝑇 𝑈)))
3430, 33mpbid 231 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑈) = (𝑇 𝑈))
3534oveq2d 7435 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 (𝑃 𝑈)) = (𝑆 (𝑇 𝑈)))
3629, 35eqtr4d 2768 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑃 𝑈)))
377, 8hlatjass 38972 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑈) = (𝑃 (𝑄 𝑈)))
382, 4, 5, 18, 37syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑈) = (𝑃 (𝑄 𝑈)))
397, 8hlatj12 38973 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑈)) = (𝑄 (𝑃 𝑈)))
402, 4, 5, 18, 39syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑈)) = (𝑄 (𝑃 𝑈)))
417, 8hlatj32 38974 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
422, 4, 5, 11, 41syl13anc 1369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
431, 42, 293brtr3d 5180 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑅) 𝑄) (𝑆 (𝑇 𝑈)))
446, 7, 8hlatjcl 38969 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
452, 4, 11, 44syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑅) ∈ (Base‘𝐾))
466, 8atbase 38891 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
475, 46syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 ∈ (Base‘𝐾))
486, 8atbase 38891 . . . . . . . . . . . . 13 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4914, 48syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑆 ∈ (Base‘𝐾))
506, 7, 8hlatjcl 38969 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
512, 15, 18, 50syl3anc 1368 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 𝑈) ∈ (Base‘𝐾))
526, 7latjcl 18434 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → (𝑆 (𝑇 𝑈)) ∈ (Base‘𝐾))
533, 49, 51, 52syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 (𝑇 𝑈)) ∈ (Base‘𝐾))
546, 23, 7latjle12 18445 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑆 (𝑇 𝑈)) ∈ (Base‘𝐾))) → (((𝑃 𝑅) (𝑆 (𝑇 𝑈)) ∧ 𝑄 (𝑆 (𝑇 𝑈))) ↔ ((𝑃 𝑅) 𝑄) (𝑆 (𝑇 𝑈))))
553, 45, 47, 53, 54syl13anc 1369 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (((𝑃 𝑅) (𝑆 (𝑇 𝑈)) ∧ 𝑄 (𝑆 (𝑇 𝑈))) ↔ ((𝑃 𝑅) 𝑄) (𝑆 (𝑇 𝑈))))
5643, 55mpbird 256 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑅) (𝑆 (𝑇 𝑈)) ∧ 𝑄 (𝑆 (𝑇 𝑈))))
5756simprd 494 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 (𝑆 (𝑇 𝑈)))
5857, 35breqtrrd 5177 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 (𝑆 (𝑃 𝑈)))
596, 7, 8hlatjcl 38969 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
602, 4, 18, 59syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑈) ∈ (Base‘𝐾))
61 simp23 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑄 (𝑃 𝑈))
626, 23, 7, 8hlexchb2 38988 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑆𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑄 (𝑃 𝑈)) → (𝑄 (𝑆 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑆 (𝑃 𝑈))))
632, 5, 14, 60, 61, 62syl131anc 1380 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑆 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑆 (𝑃 𝑈))))
6458, 63mpbid 231 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑆 (𝑃 𝑈)))
6538, 40, 643eqtrd 2769 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑈) = (𝑆 (𝑃 𝑈)))
6636, 65eqtr4d 2768 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑈))
6727, 66breqtrd 5175 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ((𝑃 𝑄) 𝑈))
68 simp21 1203 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑅 (𝑃 𝑄))
696, 23, 7, 8hlexchb1 38987 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 ((𝑃 𝑄) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑃 𝑄) 𝑈)))
702, 11, 18, 10, 68, 69syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 ((𝑃 𝑄) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑃 𝑄) 𝑈)))
7167, 70mpbid 231 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑄) 𝑈))
7271, 66eqtr4d 2768 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243  joincjn 18306  Latclat 18426  Atomscatm 38865  HLchlt 38952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-lat 18427  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953
This theorem is referenced by:  3atlem3  39088
  Copyright terms: Public domain W3C validator