Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem2 Structured version   Visualization version   GIF version

Theorem 3atlem2 36780
Description: Lemma for 3at 36786. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3atlem2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))

Proof of Theorem 3atlem2
StepHypRef Expression
1 simp3 1135 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))
2 simp11 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ HL)
32hllatd 36660 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ Lat)
4 simp121 1302 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝐴)
5 simp122 1303 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄𝐴)
6 eqid 2798 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
7 3at.j . . . . . . . . 9 = (join‘𝐾)
8 3at.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 36663 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp123 1304 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅𝐴)
126, 8atbase 36585 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ∈ (Base‘𝐾))
14 simp131 1305 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑆𝐴)
15 simp132 1306 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇𝐴)
166, 7, 8hlatjcl 36663 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
172, 14, 15, 16syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 𝑇) ∈ (Base‘𝐾))
18 simp133 1307 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈𝐴)
196, 8atbase 36585 . . . . . . . . 9 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈 ∈ (Base‘𝐾))
216, 7latjcl 17653 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
223, 17, 20, 21syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
23 3at.l . . . . . . . 8 = (le‘𝐾)
246, 23, 7latjle12 17664 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
253, 10, 13, 22, 24syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
261, 25mpbird 260 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)))
2726simprd 499 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ((𝑆 𝑇) 𝑈))
287, 8hlatjass 36666 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
292, 14, 15, 18, 28syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
30 simp22r 1290 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 (𝑇 𝑈))
31 simp22l 1289 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝑈)
3223, 7, 8hlatexchb2 36690 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑇𝐴𝑈𝐴) ∧ 𝑃𝑈) → (𝑃 (𝑇 𝑈) ↔ (𝑃 𝑈) = (𝑇 𝑈)))
332, 4, 15, 18, 31, 32syl131anc 1380 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈) ↔ (𝑃 𝑈) = (𝑇 𝑈)))
3430, 33mpbid 235 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑈) = (𝑇 𝑈))
3534oveq2d 7151 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 (𝑃 𝑈)) = (𝑆 (𝑇 𝑈)))
3629, 35eqtr4d 2836 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑃 𝑈)))
377, 8hlatjass 36666 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑈) = (𝑃 (𝑄 𝑈)))
382, 4, 5, 18, 37syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑈) = (𝑃 (𝑄 𝑈)))
397, 8hlatj12 36667 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑈)) = (𝑄 (𝑃 𝑈)))
402, 4, 5, 18, 39syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑈)) = (𝑄 (𝑃 𝑈)))
417, 8hlatj32 36668 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
422, 4, 5, 11, 41syl13anc 1369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
431, 42, 293brtr3d 5061 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑅) 𝑄) (𝑆 (𝑇 𝑈)))
446, 7, 8hlatjcl 36663 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
452, 4, 11, 44syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑅) ∈ (Base‘𝐾))
466, 8atbase 36585 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
475, 46syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 ∈ (Base‘𝐾))
486, 8atbase 36585 . . . . . . . . . . . . 13 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4914, 48syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑆 ∈ (Base‘𝐾))
506, 7, 8hlatjcl 36663 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
512, 15, 18, 50syl3anc 1368 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 𝑈) ∈ (Base‘𝐾))
526, 7latjcl 17653 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → (𝑆 (𝑇 𝑈)) ∈ (Base‘𝐾))
533, 49, 51, 52syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 (𝑇 𝑈)) ∈ (Base‘𝐾))
546, 23, 7latjle12 17664 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑆 (𝑇 𝑈)) ∈ (Base‘𝐾))) → (((𝑃 𝑅) (𝑆 (𝑇 𝑈)) ∧ 𝑄 (𝑆 (𝑇 𝑈))) ↔ ((𝑃 𝑅) 𝑄) (𝑆 (𝑇 𝑈))))
553, 45, 47, 53, 54syl13anc 1369 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (((𝑃 𝑅) (𝑆 (𝑇 𝑈)) ∧ 𝑄 (𝑆 (𝑇 𝑈))) ↔ ((𝑃 𝑅) 𝑄) (𝑆 (𝑇 𝑈))))
5643, 55mpbird 260 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑅) (𝑆 (𝑇 𝑈)) ∧ 𝑄 (𝑆 (𝑇 𝑈))))
5756simprd 499 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 (𝑆 (𝑇 𝑈)))
5857, 35breqtrrd 5058 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 (𝑆 (𝑃 𝑈)))
596, 7, 8hlatjcl 36663 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
602, 4, 18, 59syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑈) ∈ (Base‘𝐾))
61 simp23 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑄 (𝑃 𝑈))
626, 23, 7, 8hlexchb2 36681 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑆𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑄 (𝑃 𝑈)) → (𝑄 (𝑆 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑆 (𝑃 𝑈))))
632, 5, 14, 60, 61, 62syl131anc 1380 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑆 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑆 (𝑃 𝑈))))
6458, 63mpbid 235 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑆 (𝑃 𝑈)))
6538, 40, 643eqtrd 2837 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑈) = (𝑆 (𝑃 𝑈)))
6636, 65eqtr4d 2836 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑈))
6727, 66breqtrd 5056 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ((𝑃 𝑄) 𝑈))
68 simp21 1203 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑅 (𝑃 𝑄))
696, 23, 7, 8hlexchb1 36680 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 ((𝑃 𝑄) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑃 𝑄) 𝑈)))
702, 11, 18, 10, 68, 69syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 ((𝑃 𝑄) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑃 𝑄) 𝑈)))
7167, 70mpbid 235 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑄) 𝑈))
7271, 66eqtr4d 2836 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ (𝑃𝑈𝑃 (𝑇 𝑈)) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  Latclat 17647  Atomscatm 36559  HLchlt 36646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647
This theorem is referenced by:  3atlem3  36781
  Copyright terms: Public domain W3C validator