Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem1 Structured version   Visualization version   GIF version

Theorem 3atlem1 37183
Description: Lemma for 3at 37190. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3atlem1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))

Proof of Theorem 3atlem1
StepHypRef Expression
1 simp11 1205 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ HL)
2 simp131 1310 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑆𝐴)
3 simp132 1311 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇𝐴)
4 simp133 1312 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈𝐴)
5 3at.j . . . . . 6 = (join‘𝐾)
6 3at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6hlatjass 37070 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
81, 2, 3, 4, 7syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
9 simp121 1307 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝐴)
10 simp122 1308 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄𝐴)
11 simp123 1309 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅𝐴)
125, 6hlatjass 37070 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
131, 9, 10, 11, 12syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
14 simp3 1140 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))
1513, 14eqbrtrrd 5063 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈))
161hllatd 37064 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ Lat)
17 eqid 2736 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
1817, 6atbase 36989 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
199, 18syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 ∈ (Base‘𝐾))
2017, 5, 6hlatjcl 37067 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
211, 10, 11, 20syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 𝑅) ∈ (Base‘𝐾))
2217, 5, 6hlatjcl 37067 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
231, 2, 3, 22syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 𝑇) ∈ (Base‘𝐾))
2417, 6atbase 36989 . . . . . . . . . . 11 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
254, 24syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈 ∈ (Base‘𝐾))
2617, 5latjcl 17899 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
2716, 23, 25, 26syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
28 3at.l . . . . . . . . . 10 = (le‘𝐾)
2917, 28, 5latjle12 17910 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → ((𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)) ↔ (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈)))
3016, 19, 21, 27, 29syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)) ↔ (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈)))
3115, 30mpbird 260 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)))
3231simpld 498 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 ((𝑆 𝑇) 𝑈))
3332, 8breqtrd 5065 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 (𝑆 (𝑇 𝑈)))
3417, 5, 6hlatjcl 37067 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
351, 3, 4, 34syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 𝑈) ∈ (Base‘𝐾))
36 simp22 1209 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑃 (𝑇 𝑈))
3717, 28, 5, 6hlexchb2 37085 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴 ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑇 𝑈)) → (𝑃 (𝑆 (𝑇 𝑈)) ↔ (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈))))
381, 9, 2, 35, 36, 37syl131anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑆 (𝑇 𝑈)) ↔ (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈))))
3933, 38mpbid 235 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈)))
405, 6hlatj12 37071 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑇 𝑈)) = (𝑇 (𝑃 𝑈)))
411, 9, 3, 4, 40syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈)) = (𝑇 (𝑃 𝑈)))
428, 39, 413eqtr2d 2777 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑇 (𝑃 𝑈)))
435, 6hlatj12 37071 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 (𝑄 𝑅)) = (𝑄 (𝑃 𝑅)))
441, 9, 10, 11, 43syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑅)) = (𝑄 (𝑃 𝑅)))
4515, 44, 423brtr3d 5070 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈)))
4617, 6atbase 36989 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4710, 46syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 ∈ (Base‘𝐾))
4817, 5, 6hlatjcl 37067 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
491, 9, 11, 48syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑅) ∈ (Base‘𝐾))
5017, 6atbase 36989 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
513, 50syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇 ∈ (Base‘𝐾))
5217, 5, 6hlatjcl 37067 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
531, 9, 4, 52syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑈) ∈ (Base‘𝐾))
5417, 5latjcl 17899 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))
5516, 51, 53, 54syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))
5617, 28, 5latjle12 17910 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))) → ((𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))) ↔ (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈))))
5716, 47, 49, 55, 56syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))) ↔ (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈))))
5845, 57mpbird 260 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))))
5958simpld 498 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 (𝑇 (𝑃 𝑈)))
60 simp23 1210 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑄 (𝑃 𝑈))
6117, 28, 5, 6hlexchb2 37085 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑇𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑄 (𝑃 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈))))
621, 10, 3, 53, 60, 61syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈))))
6359, 62mpbid 235 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈)))
6417, 5latj13 17946 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑈)) = (𝑈 (𝑃 𝑄)))
6516, 47, 19, 25, 64syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑈 (𝑃 𝑄)))
6642, 63, 653eqtr2d 2777 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑈 (𝑃 𝑄)))
6717, 5, 6hlatjcl 37067 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
681, 9, 10, 67syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑄) ∈ (Base‘𝐾))
6917, 6atbase 36989 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
7011, 69syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ∈ (Base‘𝐾))
7117, 28, 5latjle12 17910 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
7216, 68, 70, 27, 71syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
7314, 72mpbird 260 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)))
7473simprd 499 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ((𝑆 𝑇) 𝑈))
7574, 66breqtrd 5065 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 (𝑈 (𝑃 𝑄)))
76 simp21 1208 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑅 (𝑃 𝑄))
7717, 28, 5, 6hlexchb2 37085 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 (𝑈 (𝑃 𝑄)) ↔ (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄))))
781, 11, 4, 68, 76, 77syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑈 (𝑃 𝑄)) ↔ (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄))))
7975, 78mpbid 235 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄)))
8017, 5latjcom 17907 . . 3 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑅))
8116, 70, 68, 80syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑅))
8266, 79, 813eqtr2rd 2778 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  lecple 16756  joincjn 17772  Latclat 17891  Atomscatm 36963  HLchlt 37050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-proset 17756  df-poset 17774  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-lat 17892  df-ats 36967  df-atl 36998  df-cvlat 37022  df-hlat 37051
This theorem is referenced by:  3atlem3  37185
  Copyright terms: Public domain W3C validator