Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem1 Structured version   Visualization version   GIF version

Theorem 3atlem1 36778
Description: Lemma for 3at 36785. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3atlem1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))

Proof of Theorem 3atlem1
StepHypRef Expression
1 simp11 1200 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ HL)
2 simp131 1305 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑆𝐴)
3 simp132 1306 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇𝐴)
4 simp133 1307 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈𝐴)
5 3at.j . . . . . 6 = (join‘𝐾)
6 3at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6hlatjass 36665 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
81, 2, 3, 4, 7syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
9 simp121 1302 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝐴)
10 simp122 1303 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄𝐴)
11 simp123 1304 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅𝐴)
125, 6hlatjass 36665 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
131, 9, 10, 11, 12syl13anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
14 simp3 1135 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))
1513, 14eqbrtrrd 5057 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈))
161hllatd 36659 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ Lat)
17 eqid 2801 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
1817, 6atbase 36584 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
199, 18syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 ∈ (Base‘𝐾))
2017, 5, 6hlatjcl 36662 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
211, 10, 11, 20syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 𝑅) ∈ (Base‘𝐾))
2217, 5, 6hlatjcl 36662 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
231, 2, 3, 22syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 𝑇) ∈ (Base‘𝐾))
2417, 6atbase 36584 . . . . . . . . . . 11 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
254, 24syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈 ∈ (Base‘𝐾))
2617, 5latjcl 17657 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
2716, 23, 25, 26syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
28 3at.l . . . . . . . . . 10 = (le‘𝐾)
2917, 28, 5latjle12 17668 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → ((𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)) ↔ (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈)))
3016, 19, 21, 27, 29syl13anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)) ↔ (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈)))
3115, 30mpbird 260 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)))
3231simpld 498 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 ((𝑆 𝑇) 𝑈))
3332, 8breqtrd 5059 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 (𝑆 (𝑇 𝑈)))
3417, 5, 6hlatjcl 36662 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
351, 3, 4, 34syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 𝑈) ∈ (Base‘𝐾))
36 simp22 1204 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑃 (𝑇 𝑈))
3717, 28, 5, 6hlexchb2 36680 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴 ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑇 𝑈)) → (𝑃 (𝑆 (𝑇 𝑈)) ↔ (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈))))
381, 9, 2, 35, 36, 37syl131anc 1380 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑆 (𝑇 𝑈)) ↔ (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈))))
3933, 38mpbid 235 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈)))
405, 6hlatj12 36666 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑇 𝑈)) = (𝑇 (𝑃 𝑈)))
411, 9, 3, 4, 40syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈)) = (𝑇 (𝑃 𝑈)))
428, 39, 413eqtr2d 2842 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑇 (𝑃 𝑈)))
435, 6hlatj12 36666 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 (𝑄 𝑅)) = (𝑄 (𝑃 𝑅)))
441, 9, 10, 11, 43syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑅)) = (𝑄 (𝑃 𝑅)))
4515, 44, 423brtr3d 5064 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈)))
4617, 6atbase 36584 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4710, 46syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 ∈ (Base‘𝐾))
4817, 5, 6hlatjcl 36662 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
491, 9, 11, 48syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑅) ∈ (Base‘𝐾))
5017, 6atbase 36584 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
513, 50syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇 ∈ (Base‘𝐾))
5217, 5, 6hlatjcl 36662 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
531, 9, 4, 52syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑈) ∈ (Base‘𝐾))
5417, 5latjcl 17657 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))
5516, 51, 53, 54syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))
5617, 28, 5latjle12 17668 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))) → ((𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))) ↔ (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈))))
5716, 47, 49, 55, 56syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))) ↔ (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈))))
5845, 57mpbird 260 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))))
5958simpld 498 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 (𝑇 (𝑃 𝑈)))
60 simp23 1205 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑄 (𝑃 𝑈))
6117, 28, 5, 6hlexchb2 36680 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑇𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑄 (𝑃 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈))))
621, 10, 3, 53, 60, 61syl131anc 1380 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈))))
6359, 62mpbid 235 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈)))
6417, 5latj13 17704 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑈)) = (𝑈 (𝑃 𝑄)))
6516, 47, 19, 25, 64syl13anc 1369 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑈 (𝑃 𝑄)))
6642, 63, 653eqtr2d 2842 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑈 (𝑃 𝑄)))
6717, 5, 6hlatjcl 36662 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
681, 9, 10, 67syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑄) ∈ (Base‘𝐾))
6917, 6atbase 36584 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
7011, 69syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ∈ (Base‘𝐾))
7117, 28, 5latjle12 17668 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
7216, 68, 70, 27, 71syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
7314, 72mpbird 260 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)))
7473simprd 499 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ((𝑆 𝑇) 𝑈))
7574, 66breqtrd 5059 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 (𝑈 (𝑃 𝑄)))
76 simp21 1203 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑅 (𝑃 𝑄))
7717, 28, 5, 6hlexchb2 36680 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 (𝑈 (𝑃 𝑄)) ↔ (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄))))
781, 11, 4, 68, 76, 77syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑈 (𝑃 𝑄)) ↔ (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄))))
7975, 78mpbid 235 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄)))
8017, 5latjcom 17665 . . 3 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑅))
8116, 70, 68, 80syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑅))
8266, 79, 813eqtr2rd 2843 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16479  lecple 16568  joincjn 17550  Latclat 17651  Atomscatm 36558  HLchlt 36645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-proset 17534  df-poset 17552  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-lat 17652  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646
This theorem is referenced by:  3atlem3  36780
  Copyright terms: Public domain W3C validator