Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonct Structured version   Visualization version   GIF version

Theorem vonct 43906
Description: The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonct.1 (𝜑𝑋 ∈ Fin)
vonct.2 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
vonct.3 (𝜑𝐴 ≼ ω)
Assertion
Ref Expression
vonct (𝜑 → ((voln‘𝑋)‘𝐴) = 0)

Proof of Theorem vonct
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunid 4969 . . . . 5 𝑥𝐴 {𝑥} = 𝐴
21eqcomi 2746 . . . 4 𝐴 = 𝑥𝐴 {𝑥}
32fveq2i 6720 . . 3 ((voln‘𝑋)‘𝐴) = ((voln‘𝑋)‘ 𝑥𝐴 {𝑥})
43a1i 11 . 2 (𝜑 → ((voln‘𝑋)‘𝐴) = ((voln‘𝑋)‘ 𝑥𝐴 {𝑥}))
5 nfv 1922 . . 3 𝑥𝜑
6 vonct.1 . . . 4 (𝜑𝑋 ∈ Fin)
76vonmea 43787 . . 3 (𝜑 → (voln‘𝑋) ∈ Meas)
8 eqid 2737 . . 3 dom (voln‘𝑋) = dom (voln‘𝑋)
96adantr 484 . . . 4 ((𝜑𝑥𝐴) → 𝑋 ∈ Fin)
10 vonct.2 . . . . 5 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
1110sselda 3901 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (ℝ ↑m 𝑋))
129, 11snvonmbl 43899 . . 3 ((𝜑𝑥𝐴) → {𝑥} ∈ dom (voln‘𝑋))
13 vonct.3 . . 3 (𝜑𝐴 ≼ ω)
14 sndisj 5044 . . . 4 Disj 𝑥𝐴 {𝑥}
1514a1i 11 . . 3 (𝜑Disj 𝑥𝐴 {𝑥})
165, 7, 8, 12, 13, 15meadjiun 43679 . 2 (𝜑 → ((voln‘𝑋)‘ 𝑥𝐴 {𝑥}) = (Σ^‘(𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥}))))
179, 11vonsn 43904 . . . . 5 ((𝜑𝑥𝐴) → ((voln‘𝑋)‘{𝑥}) = 0)
1817mpteq2dva 5150 . . . 4 (𝜑 → (𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥})) = (𝑥𝐴 ↦ 0))
1918fveq2d 6721 . . 3 (𝜑 → (Σ^‘(𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥}))) = (Σ^‘(𝑥𝐴 ↦ 0)))
207, 8dmmeasal 43665 . . . . . 6 (𝜑 → dom (voln‘𝑋) ∈ SAlg)
2120, 13, 12saliuncl 43538 . . . . 5 (𝜑 𝑥𝐴 {𝑥} ∈ dom (voln‘𝑋))
221, 21eqeltrrid 2843 . . . 4 (𝜑𝐴 ∈ dom (voln‘𝑋))
235, 22sge0z 43588 . . 3 (𝜑 → (Σ^‘(𝑥𝐴 ↦ 0)) = 0)
2419, 23eqtrd 2777 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥}))) = 0)
254, 16, 243eqtrd 2781 1 (𝜑 → ((voln‘𝑋)‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wss 3866  {csn 4541   ciun 4904  Disj wdisj 5018   class class class wbr 5053  cmpt 5135  dom cdm 5551  cfv 6380  (class class class)co 7213  ωcom 7644  m cmap 8508  cdom 8624  Fincfn 8626  cr 10728  0cc0 10729  Σ^csumge0 43575  volncvoln 43751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-prod 15468  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-pws 16954  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-rnghom 19735  df-drng 19769  df-field 19770  df-subrg 19798  df-abv 19853  df-staf 19881  df-srng 19882  df-lmod 19901  df-lss 19969  df-lmhm 20059  df-lvec 20140  df-sra 20209  df-rgmod 20210  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-refld 20567  df-phl 20588  df-dsmm 20694  df-frlm 20709  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-cnp 22125  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220  df-nm 23480  df-ngp 23481  df-tng 23482  df-nrg 23483  df-nlm 23484  df-cncf 23775  df-clm 23960  df-cph 24065  df-tcph 24066  df-rrx 24282  df-ovol 24361  df-vol 24362  df-salg 43525  df-sumge0 43576  df-mea 43663  df-ome 43703  df-caragen 43705  df-ovoln 43750  df-voln 43752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator