Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonct Structured version   Visualization version   GIF version

Theorem vonct 46739
Description: The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonct.1 (𝜑𝑋 ∈ Fin)
vonct.2 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
vonct.3 (𝜑𝐴 ≼ ω)
Assertion
Ref Expression
vonct (𝜑 → ((voln‘𝑋)‘𝐴) = 0)

Proof of Theorem vonct
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunid 5007 . . . . 5 𝑥𝐴 {𝑥} = 𝐴
21eqcomi 2740 . . . 4 𝐴 = 𝑥𝐴 {𝑥}
32fveq2i 6825 . . 3 ((voln‘𝑋)‘𝐴) = ((voln‘𝑋)‘ 𝑥𝐴 {𝑥})
43a1i 11 . 2 (𝜑 → ((voln‘𝑋)‘𝐴) = ((voln‘𝑋)‘ 𝑥𝐴 {𝑥}))
5 nfv 1915 . . 3 𝑥𝜑
6 vonct.1 . . . 4 (𝜑𝑋 ∈ Fin)
76vonmea 46620 . . 3 (𝜑 → (voln‘𝑋) ∈ Meas)
8 eqid 2731 . . 3 dom (voln‘𝑋) = dom (voln‘𝑋)
96adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝑋 ∈ Fin)
10 vonct.2 . . . . 5 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
1110sselda 3929 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (ℝ ↑m 𝑋))
129, 11snvonmbl 46732 . . 3 ((𝜑𝑥𝐴) → {𝑥} ∈ dom (voln‘𝑋))
13 vonct.3 . . 3 (𝜑𝐴 ≼ ω)
14 sndisj 5081 . . . 4 Disj 𝑥𝐴 {𝑥}
1514a1i 11 . . 3 (𝜑Disj 𝑥𝐴 {𝑥})
165, 7, 8, 12, 13, 15meadjiun 46512 . 2 (𝜑 → ((voln‘𝑋)‘ 𝑥𝐴 {𝑥}) = (Σ^‘(𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥}))))
179, 11vonsn 46737 . . . . 5 ((𝜑𝑥𝐴) → ((voln‘𝑋)‘{𝑥}) = 0)
1817mpteq2dva 5182 . . . 4 (𝜑 → (𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥})) = (𝑥𝐴 ↦ 0))
1918fveq2d 6826 . . 3 (𝜑 → (Σ^‘(𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥}))) = (Σ^‘(𝑥𝐴 ↦ 0)))
207, 8dmmeasal 46498 . . . . . 6 (𝜑 → dom (voln‘𝑋) ∈ SAlg)
2120, 13, 12saliuncl 46369 . . . . 5 (𝜑 𝑥𝐴 {𝑥} ∈ dom (voln‘𝑋))
221, 21eqeltrrid 2836 . . . 4 (𝜑𝐴 ∈ dom (voln‘𝑋))
235, 22sge0z 46421 . . 3 (𝜑 → (Σ^‘(𝑥𝐴 ↦ 0)) = 0)
2419, 23eqtrd 2766 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ ((voln‘𝑋)‘{𝑥}))) = 0)
254, 16, 243eqtrd 2770 1 (𝜑 → ((voln‘𝑋)‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  {csn 4573   ciun 4939  Disj wdisj 5056   class class class wbr 5089  cmpt 5170  dom cdm 5614  cfv 6481  (class class class)co 7346  ωcom 7796  m cmap 8750  cdom 8867  Fincfn 8869  cr 11005  0cc0 11006  Σ^csumge0 46408  volncvoln 46584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-pws 17353  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-abv 20724  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-lmhm 20956  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-refld 21542  df-phl 21563  df-dsmm 21669  df-frlm 21684  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-nm 24497  df-ngp 24498  df-tng 24499  df-nrg 24500  df-nlm 24501  df-cncf 24798  df-clm 24990  df-cph 25095  df-tcph 25096  df-rrx 25312  df-ovol 25392  df-vol 25393  df-salg 46355  df-sumge0 46409  df-mea 46496  df-ome 46536  df-caragen 46538  df-ovoln 46583  df-voln 46585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator