Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrspunidl Structured version   Visualization version   GIF version

Theorem elrspunidl 33378
Description: Elementhood in the span of a union of ideals. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypotheses
Ref Expression
elrspunidl.n 𝑁 = (RSpan‘𝑅)
elrspunidl.b 𝐵 = (Base‘𝑅)
elrspunidl.1 0 = (0g𝑅)
elrspunidl.x · = (.r𝑅)
elrspunidl.r (𝜑𝑅 ∈ Ring)
elrspunidl.i (𝜑𝑆 ⊆ (LIdeal‘𝑅))
Assertion
Ref Expression
elrspunidl (𝜑 → (𝑋 ∈ (𝑁 𝑆) ↔ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)))
Distinct variable groups:   0 ,𝑎,𝑘   · ,𝑎,𝑘   𝐵,𝑎,𝑘   𝑅,𝑎,𝑘   𝑆,𝑎,𝑘   𝑋,𝑎,𝑘   𝜑,𝑎,𝑘
Allowed substitution hints:   𝑁(𝑘,𝑎)

Proof of Theorem elrspunidl
Dummy variables 𝑏 𝑓 𝑖 𝑗 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrspunidl.n . . 3 𝑁 = (RSpan‘𝑅)
2 elrspunidl.b . . 3 𝐵 = (Base‘𝑅)
3 elrspunidl.1 . . 3 0 = (0g𝑅)
4 elrspunidl.x . . 3 · = (.r𝑅)
5 elrspunidl.r . . 3 (𝜑𝑅 ∈ Ring)
6 elrspunidl.i . . . . . . 7 (𝜑𝑆 ⊆ (LIdeal‘𝑅))
76sselda 3937 . . . . . 6 ((𝜑𝑖𝑆) → 𝑖 ∈ (LIdeal‘𝑅))
8 eqid 2729 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
92, 8lidlss 21137 . . . . . 6 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
107, 9syl 17 . . . . 5 ((𝜑𝑖𝑆) → 𝑖𝐵)
1110ralrimiva 3121 . . . 4 (𝜑 → ∀𝑖𝑆 𝑖𝐵)
12 unissb 4893 . . . 4 ( 𝑆𝐵 ↔ ∀𝑖𝑆 𝑖𝐵)
1311, 12sylibr 234 . . 3 (𝜑 𝑆𝐵)
141, 2, 3, 4, 5, 13elrsp 33322 . 2 (𝜑 → (𝑋 ∈ (𝑁 𝑆) ↔ ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))))
15 fvexd 6841 . . . . . . . . . 10 (𝜑 → (LIdeal‘𝑅) ∈ V)
1615, 6ssexd 5266 . . . . . . . . 9 (𝜑𝑆 ∈ V)
1716uniexd 7682 . . . . . . . 8 (𝜑 𝑆 ∈ V)
18 eluni2 4865 . . . . . . . . . . 11 (𝑗 𝑆 ↔ ∃𝑖𝑆 𝑗𝑖)
1918biimpi 216 . . . . . . . . . 10 (𝑗 𝑆 → ∃𝑖𝑆 𝑗𝑖)
2019adantl 481 . . . . . . . . 9 ((𝜑𝑗 𝑆) → ∃𝑖𝑆 𝑗𝑖)
2120ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑗 𝑆𝑖𝑆 𝑗𝑖)
22 eleq2 2817 . . . . . . . . 9 (𝑖 = (𝑓𝑗) → (𝑗𝑖𝑗 ∈ (𝑓𝑗)))
2322ac6sg 10401 . . . . . . . 8 ( 𝑆 ∈ V → (∀𝑗 𝑆𝑖𝑆 𝑗𝑖 → ∃𝑓(𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))))
2417, 21, 23sylc 65 . . . . . . 7 (𝜑 → ∃𝑓(𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)))
2524ad3antrrr 730 . . . . . 6 ((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) → ∃𝑓(𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)))
26 simp-5l 784 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝜑)
2726adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → 𝜑)
28 ringcmn 20185 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2927, 5, 283syl 18 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → 𝑅 ∈ CMnd)
30 vex 3442 . . . . . . . . . . . . 13 𝑓 ∈ V
31 cnvexg 7864 . . . . . . . . . . . . 13 (𝑓 ∈ V → 𝑓 ∈ V)
32 imaexg 7853 . . . . . . . . . . . . 13 (𝑓 ∈ V → (𝑓 “ {𝑖}) ∈ V)
3330, 31, 32mp2b 10 . . . . . . . . . . . 12 (𝑓 “ {𝑖}) ∈ V
3433a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑓 “ {𝑖}) ∈ V)
355ad7antr 738 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑅 ∈ Ring)
36 elmapi 8783 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝐵m 𝑆) → 𝑏: 𝑆𝐵)
3736ad7antlr 739 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑏: 𝑆𝐵)
38 cnvimass 6037 . . . . . . . . . . . . . . . . 17 (𝑓 “ {𝑖}) ⊆ dom 𝑓
39 fdm 6665 . . . . . . . . . . . . . . . . 17 (𝑓: 𝑆𝑆 → dom 𝑓 = 𝑆)
4038, 39sseqtrid 3980 . . . . . . . . . . . . . . . 16 (𝑓: 𝑆𝑆 → (𝑓 “ {𝑖}) ⊆ 𝑆)
4140ad3antlr 731 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑓 “ {𝑖}) ⊆ 𝑆)
4241sselda 3937 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑙 𝑆)
4337, 42ffvelcdmd 7023 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → (𝑏𝑙) ∈ 𝐵)
4413ad7antr 738 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑆𝐵)
4544, 42sseldd 3938 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑙𝐵)
462, 4ringcl 20153 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑏𝑙) ∈ 𝐵𝑙𝐵) → ((𝑏𝑙) · 𝑙) ∈ 𝐵)
4735, 43, 45, 46syl3anc 1373 . . . . . . . . . . . 12 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → ((𝑏𝑙) · 𝑙) ∈ 𝐵)
48 fveq2 6826 . . . . . . . . . . . . . 14 (𝑗 = 𝑙 → (𝑏𝑗) = (𝑏𝑙))
49 id 22 . . . . . . . . . . . . . 14 (𝑗 = 𝑙𝑗 = 𝑙)
5048, 49oveq12d 7371 . . . . . . . . . . . . 13 (𝑗 = 𝑙 → ((𝑏𝑗) · 𝑗) = ((𝑏𝑙) · 𝑙))
5150cbvmptv 5199 . . . . . . . . . . . 12 (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑙 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑙) · 𝑙))
5247, 51fmptd 7052 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)):(𝑓 “ {𝑖})⟶𝐵)
5334mptexd 7164 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V)
5452ffund 6660 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → Fun (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))
55 simp-5r 785 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → 𝑏 finSupp 0 )
56 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑗((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 )
57 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑗𝑅
58 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑗 Σg
59 nfmpt1 5194 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))
6057, 58, 59nfov 7383 . . . . . . . . . . . . . . . . . 18 𝑗(𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))
6160nfeq2 2909 . . . . . . . . . . . . . . . . 17 𝑗 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))
6256, 61nfan 1899 . . . . . . . . . . . . . . . 16 𝑗(((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))
63 nfv 1914 . . . . . . . . . . . . . . . 16 𝑗 𝑓: 𝑆𝑆
6462, 63nfan 1899 . . . . . . . . . . . . . . 15 𝑗((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆)
65 nfra1 3253 . . . . . . . . . . . . . . 15 𝑗𝑗 𝑆𝑗 ∈ (𝑓𝑗)
6664, 65nfan 1899 . . . . . . . . . . . . . 14 𝑗(((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))
67 nfv 1914 . . . . . . . . . . . . . 14 𝑗 𝑖𝑆
6866, 67nfan 1899 . . . . . . . . . . . . 13 𝑗((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆)
69 nfcv 2891 . . . . . . . . . . . . 13 𝑗(𝑓 “ {𝑖})
70 nfcv 2891 . . . . . . . . . . . . 13 𝑗(𝑏 supp 0 )
7136ad7antlr 739 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑏: 𝑆𝐵)
7271ffnd 6657 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑏 Fn 𝑆)
7326, 17syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆 ∈ V)
7473ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑆 ∈ V)
753fvexi 6840 . . . . . . . . . . . . . . . . 17 0 ∈ V
7675a1i 11 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 0 ∈ V)
7741ssdifd 4098 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 )) ⊆ ( 𝑆 ∖ (𝑏 supp 0 )))
7877sselda 3937 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
7972, 74, 76, 78fvdifsupp 8111 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
8079oveq1d 7368 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
815ad7antr 738 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑅 ∈ Ring)
8213ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑆𝐵)
8378eldifad 3917 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑗 𝑆)
8482, 83sseldd 3938 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑗𝐵)
852, 4, 3ringlz 20196 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑗𝐵) → ( 0 · 𝑗) = 0 )
8681, 84, 85syl2anc 584 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → ( 0 · 𝑗) = 0 )
8780, 86eqtrd 2764 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = 0 )
8868, 69, 70, 87, 34suppss2f 32595 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → ((𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))
89 fsuppsssupp 9290 . . . . . . . . . . . 12 ((((𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V ∧ Fun (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) ∧ (𝑏 finSupp 0 ∧ ((𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
9053, 54, 55, 88, 89syl22anc 838 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
912, 3, 29, 34, 52, 90gsumcl 19812 . . . . . . . . . 10 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) ∈ 𝐵)
9291fmpttd 7053 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))):𝑆𝐵)
932fvexi 6840 . . . . . . . . . . . 12 𝐵 ∈ V
9493a1i 11 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
9594, 16elmapd 8774 . . . . . . . . . 10 (𝜑 → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ (𝐵m 𝑆) ↔ (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))):𝑆𝐵))
9695biimpar 477 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))):𝑆𝐵) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ (𝐵m 𝑆))
9726, 92, 96syl2anc 584 . . . . . . . 8 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ (𝐵m 𝑆))
98 breq1 5098 . . . . . . . . . 10 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑎 finSupp 0 ↔ (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 ))
99 oveq2 7361 . . . . . . . . . . 11 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑅 Σg 𝑎) = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))))
10099eqeq2d 2740 . . . . . . . . . 10 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑋 = (𝑅 Σg 𝑎) ↔ 𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))))))
101 fveq1 6825 . . . . . . . . . . . 12 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑎𝑘) = ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘))
102101eleq1d 2813 . . . . . . . . . . 11 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → ((𝑎𝑘) ∈ 𝑘 ↔ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘))
103102ralbidv 3152 . . . . . . . . . 10 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘 ↔ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘))
10498, 100, 1033anbi123d 1438 . . . . . . . . 9 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → ((𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ↔ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) ∧ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)))
105104adantl 481 . . . . . . . 8 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) → ((𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ↔ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) ∧ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)))
10626, 16syl 17 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆 ∈ V)
107106mptexd 7164 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ V)
10875a1i 11 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 0 ∈ V)
109 funmpt 6524 . . . . . . . . . . 11 Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))
110109a1i 11 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))))
111 simplr 768 . . . . . . . . . . . . 13 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑓: 𝑆𝑆)
112111ffund 6660 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Fun 𝑓)
113 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑏 finSupp 0 )
114113fsuppimpd 9278 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑏 supp 0 ) ∈ Fin)
115 imafi 9222 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ (𝑏 supp 0 ) ∈ Fin) → (𝑓 “ (𝑏 supp 0 )) ∈ Fin)
116112, 114, 115syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑓 “ (𝑏 supp 0 )) ∈ Fin)
117 nfv 1914 . . . . . . . . . . . . . . . 16 𝑗 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))
11866, 117nfan 1899 . . . . . . . . . . . . . . 15 𝑗((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))))
119 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑓: 𝑆𝑆)
120119ffund 6660 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → Fun 𝑓)
121 snssi 4762 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))) → {𝑖} ⊆ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))))
122121adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → {𝑖} ⊆ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))))
123 sspreima 7006 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝑓 ∧ {𝑖} ⊆ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))))
124120, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))))
125 difpreima 7003 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝑓 → (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) = ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))))
126120, 125syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) = ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))))
127124, 126sseqtrd 3974 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))))
128 suppssdm 8117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 supp 0 ) ⊆ dom 𝑏
12936ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑏: 𝑆𝐵)
130128, 129fssdm 6675 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ 𝑆)
131119fdmd 6666 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → dom 𝑓 = 𝑆)
132130, 131sseqtrrd 3975 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ dom 𝑓)
133 sseqin2 4176 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 supp 0 ) ⊆ dom 𝑓 ↔ (dom 𝑓 ∩ (𝑏 supp 0 )) = (𝑏 supp 0 ))
134133biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏 supp 0 ) ⊆ dom 𝑓 → (dom 𝑓 ∩ (𝑏 supp 0 )) = (𝑏 supp 0 ))
135 dminss 6106 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑓 ∩ (𝑏 supp 0 )) ⊆ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))
136134, 135eqsstrrdi 3983 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 supp 0 ) ⊆ dom 𝑓 → (𝑏 supp 0 ) ⊆ (𝑓 “ (𝑓 “ (𝑏 supp 0 ))))
137132, 136syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ (𝑓 “ (𝑓 “ (𝑏 supp 0 ))))
138137sscond 4099 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))) ⊆ ((𝑓𝑆) ∖ (𝑏 supp 0 )))
139127, 138sstrd 3948 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ ((𝑓𝑆) ∖ (𝑏 supp 0 )))
140 fimacnv 6678 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓: 𝑆𝑆 → (𝑓𝑆) = 𝑆)
141119, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓𝑆) = 𝑆)
142141difeq1d 4078 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → ((𝑓𝑆) ∖ (𝑏 supp 0 )) = ( 𝑆 ∖ (𝑏 supp 0 )))
143139, 142sseqtrd 3974 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ ( 𝑆 ∖ (𝑏 supp 0 )))
144143sselda 3937 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
145 ssidd 3961 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ (𝑏 supp 0 ))
14673adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑆 ∈ V)
14775a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 0 ∈ V)
148129, 145, 146, 147suppssr 8135 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
149144, 148syldan 591 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → (𝑏𝑗) = 0 )
150149oveq1d 7368 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
1515ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑅 ∈ Ring)
15213ad7antr 738 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑆𝐵)
15340ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ 𝑆)
154153sselda 3937 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑗 𝑆)
155152, 154sseldd 3938 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑗𝐵)
156151, 155, 85syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → ( 0 · 𝑗) = 0 )
157150, 156eqtrd 2764 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → ((𝑏𝑗) · 𝑗) = 0 )
158118, 157mpteq2da 5187 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 ))
159158oveq2d 7369 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 )))
1605, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ CMnd)
161160cmnmndd 19701 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Mnd)
162161ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑅 ∈ Mnd)
1633gsumz 18728 . . . . . . . . . . . . . 14 ((𝑅 ∈ Mnd ∧ (𝑓 “ {𝑖}) ∈ V) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 )) = 0 )
164162, 33, 163sylancl 586 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 )) = 0 )
165159, 164eqtrd 2764 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) = 0 )
166165, 106suppss2 8140 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ⊆ (𝑓 “ (𝑏 supp 0 )))
167116, 166ssfid 9170 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ∈ Fin)
168 isfsupp 9274 . . . . . . . . . . 11 (((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ V ∧ 0 ∈ V) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 ↔ (Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∧ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ∈ Fin)))
169168biimpar 477 . . . . . . . . . 10 ((((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ V ∧ 0 ∈ V) ∧ (Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∧ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ∈ Fin)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 )
170107, 108, 110, 167, 169syl22anc 838 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 )
171 simpllr 775 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))
17226, 160syl 17 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑅 ∈ CMnd)
1735ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → 𝑅 ∈ Ring)
17436ad5antlr 735 . . . . . . . . . . . . . 14 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑏: 𝑆𝐵)
175174ffvelcdmda 7022 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → (𝑏𝑗) ∈ 𝐵)
17626, 13syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆𝐵)
177176sselda 3937 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → 𝑗𝐵)
1782, 4ringcl 20153 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑏𝑗) ∈ 𝐵𝑗𝐵) → ((𝑏𝑗) · 𝑗) ∈ 𝐵)
179173, 175, 177, 178syl3anc 1373 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → ((𝑏𝑗) · 𝑗) ∈ 𝐵)
180 eqid 2729 . . . . . . . . . . . 12 (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))
18166, 179, 180fmptdf 7055 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)): 𝑆𝐵)
18273mptexd 7164 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ∈ V)
183 funmpt 6524 . . . . . . . . . . . . 13 Fun (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))
184183a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Fun (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))
185 nfcv 2891 . . . . . . . . . . . . 13 𝑗 𝑆
186174adantr 480 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑏: 𝑆𝐵)
187186ffnd 6657 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑏 Fn 𝑆)
18873adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑆 ∈ V)
18975a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 0 ∈ V)
190 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
191187, 188, 189, 190fvdifsupp 8111 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
192191oveq1d 7368 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
1935ad6antr 736 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑅 ∈ Ring)
194176adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑆𝐵)
195190eldifad 3917 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑗 𝑆)
196194, 195sseldd 3938 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑗𝐵)
197193, 196, 85syl2anc 584 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → ( 0 · 𝑗) = 0 )
198192, 197eqtrd 2764 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = 0 )
19966, 185, 70, 198, 73suppss2f 32595 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))
200 fsuppsssupp 9290 . . . . . . . . . . . 12 ((((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ∈ V ∧ Fun (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) ∧ (𝑏 finSupp 0 ∧ ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
201182, 184, 113, 199, 200syl22anc 838 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
202 sndisj 5087 . . . . . . . . . . . 12 Disj 𝑖𝑆 {𝑖}
203 disjpreima 32546 . . . . . . . . . . . 12 ((Fun 𝑓Disj 𝑖𝑆 {𝑖}) → Disj 𝑖𝑆 (𝑓 “ {𝑖}))
204112, 202, 203sylancl 586 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Disj 𝑖𝑆 (𝑓 “ {𝑖}))
205 iunid 5012 . . . . . . . . . . . . 13 𝑖𝑆 {𝑖} = 𝑆
206205imaeq2i 6013 . . . . . . . . . . . 12 (𝑓 𝑖𝑆 {𝑖}) = (𝑓𝑆)
207 iunpreima 32526 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 𝑖𝑆 {𝑖}) = 𝑖𝑆 (𝑓 “ {𝑖}))
208112, 207syl 17 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑓 𝑖𝑆 {𝑖}) = 𝑖𝑆 (𝑓 “ {𝑖}))
209140ad2antlr 727 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑓𝑆) = 𝑆)
210206, 208, 2093eqtr3a 2788 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑖𝑆 (𝑓 “ {𝑖}) = 𝑆)
2112, 3, 172, 73, 106, 181, 201, 204, 210gsumpart 33023 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖}))))))
21241resmptd 5995 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖})) = (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))
213212oveq2d 7369 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖}))) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))
214213mpteq2dva 5188 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖})))) = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))))
215214oveq2d 7369 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖}))))) = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))))
216171, 211, 2153eqtrd 2768 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))))
217 eqid 2729 . . . . . . . . . . . 12 (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))
218 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘)
219218sneqd 4591 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → {𝑖} = {𝑘})
220219imaeq2d 6015 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → (𝑓 “ {𝑖}) = (𝑓 “ {𝑘}))
221220mpteq1d 5185 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)))
222221oveq2d 7369 . . . . . . . . . . . 12 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))))
223 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑘𝑆)
224 ovexd 7388 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))) ∈ V)
225217, 222, 223, 224fvmptd2 6942 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))))
226160ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑅 ∈ CMnd)
22730cnvex 7865 . . . . . . . . . . . . . 14 𝑓 ∈ V
228227imaex 7854 . . . . . . . . . . . . 13 (𝑓 “ {𝑘}) ∈ V
229228a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑓 “ {𝑘}) ∈ V)
2305ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑅 ∈ Ring)
23126, 6syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆 ⊆ (LIdeal‘𝑅))
232231sselda 3937 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑘 ∈ (LIdeal‘𝑅))
2338lidlsubg 21148 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (SubGrp‘𝑅))
234 subgsubm 19045 . . . . . . . . . . . . . 14 (𝑘 ∈ (SubGrp‘𝑅) → 𝑘 ∈ (SubMnd‘𝑅))
235233, 234syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (SubMnd‘𝑅))
236230, 232, 235syl2anc 584 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑘 ∈ (SubMnd‘𝑅))
237230adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑅 ∈ Ring)
238232adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑘 ∈ (LIdeal‘𝑅))
23936ad7antlr 739 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑏: 𝑆𝐵)
240 cnvimass 6037 . . . . . . . . . . . . . . . . . 18 (𝑓 “ {𝑘}) ⊆ dom 𝑓
241240, 39sseqtrid 3980 . . . . . . . . . . . . . . . . 17 (𝑓: 𝑆𝑆 → (𝑓 “ {𝑘}) ⊆ 𝑆)
242241ad3antlr 731 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑓 “ {𝑘}) ⊆ 𝑆)
243242sselda 3937 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑙 𝑆)
244239, 243ffvelcdmd 7023 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → (𝑏𝑙) ∈ 𝐵)
245 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑙 → (𝑓𝑗) = (𝑓𝑙))
24649, 245eleq12d 2822 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑙 → (𝑗 ∈ (𝑓𝑗) ↔ 𝑙 ∈ (𝑓𝑙)))
247 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))
248246, 247, 243rspcdva 3580 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑙 ∈ (𝑓𝑙))
249 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑓: 𝑆𝑆)
250249ffnd 6657 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑓 Fn 𝑆)
251 elpreima 6996 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn 𝑆 → (𝑙 ∈ (𝑓 “ {𝑘}) ↔ (𝑙 𝑆 ∧ (𝑓𝑙) ∈ {𝑘})))
252251biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑓 Fn 𝑆𝑙 ∈ (𝑓 “ {𝑘})) → (𝑙 𝑆 ∧ (𝑓𝑙) ∈ {𝑘}))
253 elsni 4596 . . . . . . . . . . . . . . . . 17 ((𝑓𝑙) ∈ {𝑘} → (𝑓𝑙) = 𝑘)
254252, 253simpl2im 503 . . . . . . . . . . . . . . . 16 ((𝑓 Fn 𝑆𝑙 ∈ (𝑓 “ {𝑘})) → (𝑓𝑙) = 𝑘)
255250, 254sylancom 588 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → (𝑓𝑙) = 𝑘)
256248, 255eleqtrd 2830 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑙𝑘)
2578, 2, 4lidlmcl 21150 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ((𝑏𝑙) ∈ 𝐵𝑙𝑘)) → ((𝑏𝑙) · 𝑙) ∈ 𝑘)
258237, 238, 244, 256, 257syl22anc 838 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → ((𝑏𝑙) · 𝑙) ∈ 𝑘)
25950cbvmptv 5199 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑙 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑙) · 𝑙))
260258, 259fmptd 7052 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)):(𝑓 “ {𝑘})⟶𝑘)
261229mptexd 7164 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V)
262260ffund 6660 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → Fun (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)))
263 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑏 finSupp 0 )
264 nfv 1914 . . . . . . . . . . . . . . 15 𝑗 𝑘𝑆
26566, 264nfan 1899 . . . . . . . . . . . . . 14 𝑗((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆)
266 nfcv 2891 . . . . . . . . . . . . . 14 𝑗(𝑓 “ {𝑘})
26736ad7antlr 739 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑏: 𝑆𝐵)
268267ffnd 6657 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑏 Fn 𝑆)
26973ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑆 ∈ V)
27075a1i 11 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 0 ∈ V)
271242ssdifd 4098 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 )) ⊆ ( 𝑆 ∖ (𝑏 supp 0 )))
272271sselda 3937 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
273268, 269, 270, 272fvdifsupp 8111 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
274273oveq1d 7368 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
27513ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑆𝐵)
276272eldifad 3917 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑗 𝑆)
277275, 276sseldd 3938 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑗𝐵)
278230, 277, 85syl2an2r 685 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → ( 0 · 𝑗) = 0 )
279274, 278eqtrd 2764 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = 0 )
280265, 266, 70, 279, 229suppss2f 32595 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))
281 fsuppsssupp 9290 . . . . . . . . . . . . 13 ((((𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V ∧ Fun (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))) ∧ (𝑏 finSupp 0 ∧ ((𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
282261, 262, 263, 280, 281syl22anc 838 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
2833, 226, 229, 236, 260, 282gsumsubmcl 19816 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))) ∈ 𝑘)
284225, 283eqeltrd 2828 . . . . . . . . . 10 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)
285284ralrimiva 3121 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)
286170, 216, 2853jca 1128 . . . . . . . 8 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) ∧ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘))
28797, 105, 286rspcedvd 3581 . . . . . . 7 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
288287anasss 466 . . . . . 6 (((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ (𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
28925, 288exlimddv 1935 . . . . 5 ((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
290289anasss 466 . . . 4 (((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ (𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
291290r19.29an 3133 . . 3 ((𝜑 ∧ ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
2925ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑅 ∈ Ring)
293292adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑅 ∈ Ring)
294 eqid 2729 . . . . . . . . . . . . . 14 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
295294zrhrhm 21436 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
296 zringbas 21378 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
297296, 2rhmf 20388 . . . . . . . . . . . . 13 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶𝐵)
298293, 295, 2973syl 18 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (ℤRHom‘𝑅):ℤ⟶𝐵)
299 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 ∈ (𝐵m 𝑆))
30075a1i 11 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 0 ∈ V)
301 ssv 3962 . . . . . . . . . . . . . . . . . 18 ran 𝑎 ⊆ V
302 ssdif 4097 . . . . . . . . . . . . . . . . . 18 (ran 𝑎 ⊆ V → (ran 𝑎 ∖ { 0 }) ⊆ (V ∖ { 0 }))
303301, 302ax-mp 5 . . . . . . . . . . . . . . . . 17 (ran 𝑎 ∖ { 0 }) ⊆ (V ∖ { 0 })
304303sseli 3933 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ran 𝑎 ∖ { 0 }) → 𝑚 ∈ (V ∖ { 0 }))
305304adantl 481 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑚 ∈ (V ∖ { 0 }))
306 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 finSupp 0 )
307299, 300, 305, 306fsuppinisegfi 32643 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (𝑎 “ {𝑚}) ∈ Fin)
308 hashcl 14281 . . . . . . . . . . . . . 14 ((𝑎 “ {𝑚}) ∈ Fin → (♯‘(𝑎 “ {𝑚})) ∈ ℕ0)
309307, 308syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑚})) ∈ ℕ0)
310309nn0zd 12515 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑚})) ∈ ℤ)
311298, 310ffvelcdmd 7023 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))) ∈ 𝐵)
312 eqid 2729 . . . . . . . . . . 11 (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) = (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))))
313311, 312fmptd 7052 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))):(ran 𝑎 ∖ { 0 })⟶𝐵)
3142, 3ring0cl 20170 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0𝐵)
315 fconst6g 6717 . . . . . . . . . . 11 ( 0𝐵 → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }):( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))⟶𝐵)
316292, 314, 3153syl 18 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }):( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))⟶𝐵)
317 disjdif 4425 . . . . . . . . . . 11 ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅
318317a1i 11 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅)
319313, 316, 318fun2d 6692 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })):((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))⟶𝐵)
320 simplll 774 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝜑𝑎 ∈ (𝐵m 𝑆)))
32194, 16elmapd 8774 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎 ∈ (𝐵m 𝑆) ↔ 𝑎:𝑆𝐵))
322321biimpa 476 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (𝐵m 𝑆)) → 𝑎:𝑆𝐵)
323320, 322syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎:𝑆𝐵)
324323ffnd 6657 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎 Fn 𝑆)
325 elssuni 4891 . . . . . . . . . . . . . . . . 17 (𝑘𝑆𝑘 𝑆)
326325adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ 𝑘𝑆) → 𝑘 𝑆)
327326sseld 3936 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ 𝑘𝑆) → ((𝑎𝑘) ∈ 𝑘 → (𝑎𝑘) ∈ 𝑆))
328327ralimdva 3141 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) → (∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘 → ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑆))
329328imp 406 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑆)
330 fnfvrnss 7059 . . . . . . . . . . . . 13 ((𝑎 Fn 𝑆 ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑆) → ran 𝑎 𝑆)
331324, 329, 330syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ran 𝑎 𝑆)
332331ssdifssd 4100 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (ran 𝑎 ∖ { 0 }) ⊆ 𝑆)
333 undif 4435 . . . . . . . . . . 11 ((ran 𝑎 ∖ { 0 }) ⊆ 𝑆 ↔ ((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = 𝑆)
334332, 333sylib 218 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = 𝑆)
335334feq2d 6640 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })):((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))⟶𝐵 ↔ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })): 𝑆𝐵))
336319, 335mpbid 232 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })): 𝑆𝐵)
33793a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝐵 ∈ V)
33817ad4antr 732 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑆 ∈ V)
339337, 338elmapd 8774 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ (𝐵m 𝑆) ↔ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })): 𝑆𝐵))
340336, 339mpbird 257 . . . . . . 7 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ (𝐵m 𝑆))
341 breq1 5098 . . . . . . . . 9 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑏 finSupp 0 ↔ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 ))
342 fveq1 6825 . . . . . . . . . . . . 13 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑏𝑗) = (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗))
343342oveq1d 7368 . . . . . . . . . . . 12 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → ((𝑏𝑗) · 𝑗) = ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))
344343mpteq2dv 5189 . . . . . . . . . . 11 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)))
345344oveq2d 7369 . . . . . . . . . 10 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))
346345eqeq2d 2740 . . . . . . . . 9 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) ↔ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)))))
347341, 346anbi12d 632 . . . . . . . 8 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → ((𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ↔ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))))
348347adantl 481 . . . . . . 7 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))) → ((𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ↔ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))))
349319ffund 6660 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → Fun ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })))
350340elexd 3462 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ V)
35175a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 0 ∈ V)
352323ffund 6660 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → Fun 𝑎)
353320simprd 495 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎 ∈ (𝐵m 𝑆))
354 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎 finSupp 0 )
355 fsupprnfi 32648 . . . . . . . . . . . . 13 (((Fun 𝑎𝑎 ∈ (𝐵m 𝑆)) ∧ ( 0 ∈ V ∧ 𝑎 finSupp 0 )) → ran 𝑎 ∈ Fin)
356 diffi 9099 . . . . . . . . . . . . 13 (ran 𝑎 ∈ Fin → (ran 𝑎 ∖ { 0 }) ∈ Fin)
357355, 356syl 17 . . . . . . . . . . . 12 (((Fun 𝑎𝑎 ∈ (𝐵m 𝑆)) ∧ ( 0 ∈ V ∧ 𝑎 finSupp 0 )) → (ran 𝑎 ∖ { 0 }) ∈ Fin)
358352, 353, 351, 354, 357syl22anc 838 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (ran 𝑎 ∖ { 0 }) ∈ Fin)
359313, 358, 351fdmfifsupp 9284 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) finSupp 0 )
36013ssdifssd 4100 . . . . . . . . . . . . 13 (𝜑 → ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ⊆ 𝐵)
361360ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ⊆ 𝐵)
362337, 361ssexd 5266 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ∈ V)
363362, 351fczfsuppd 9295 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) finSupp 0 )
364359, 363fsuppun 9296 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) supp 0 ) ∈ Fin)
365 funisfsupp 9276 . . . . . . . . . 10 ((Fun ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∧ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ V ∧ 0 ∈ V) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 ↔ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) supp 0 ) ∈ Fin))
366365biimpar 477 . . . . . . . . 9 (((Fun ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∧ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ V ∧ 0 ∈ V) ∧ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) supp 0 ) ∈ Fin) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 )
367349, 350, 351, 364, 366syl31anc 1375 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 )
368 fvex 6839 . . . . . . . . . . . . . . . 16 ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))) ∈ V
369368, 312fnmpti 6629 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) Fn (ran 𝑎 ∖ { 0 })
370369a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) Fn (ran 𝑎 ∖ { 0 }))
371 fnconstg 6716 . . . . . . . . . . . . . . . 16 ( 0 ∈ V → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))
37275, 371ax-mp 5 . . . . . . . . . . . . . . 15 (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))
373372a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))
374317a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅)
375 simpr 484 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑗 ∈ (ran 𝑎 ∖ { 0 }))
376370, 373, 374, 375fvun1d 6920 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))))‘𝑗))
377 sneq 4589 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → {𝑚} = {𝑗})
378377imaeq2d 6015 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → (𝑎 “ {𝑚}) = (𝑎 “ {𝑗}))
379378fveq2d 6830 . . . . . . . . . . . . . . 15 (𝑚 = 𝑗 → (♯‘(𝑎 “ {𝑚})) = (♯‘(𝑎 “ {𝑗})))
380379fveq2d 6830 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))) = ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))))
381 fvexd 6841 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) ∈ V)
382312, 380, 375, 381fvmptd3 6957 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))))‘𝑗) = ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))))
383376, 382eqtrd 2764 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))))
384383oveq1d 7368 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) = (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))
385384mpteq2dva 5188 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)) = (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗)))
386385oveq2d 7369 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))))
387292, 28syl 17 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑅 ∈ CMnd)
388317a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅)
389 fvun2 6919 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) Fn (ran 𝑎 ∖ { 0 }) ∧ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ∧ (((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅ ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗))
390369, 372, 389mp3an12 1453 . . . . . . . . . . . . . 14 ((((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅ ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗))
391388, 390sylancom 588 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗))
39275fvconst2 7144 . . . . . . . . . . . . . 14 (𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) → ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗) = 0 )
393392adantl 481 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗) = 0 )
394391, 393eqtrd 2764 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = 0 )
395394oveq1d 7368 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) = ( 0 · 𝑗))
396361sselda 3937 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → 𝑗𝐵)
397292, 396, 85syl2an2r 685 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ( 0 · 𝑗) = 0 )
398395, 397eqtrd 2764 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) = 0 )
399292adantr 480 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → 𝑅 ∈ Ring)
400336ffvelcdmda 7022 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) ∈ 𝐵)
40113ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑆𝐵)
402401sselda 3937 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → 𝑗𝐵)
4032, 4ringcl 20153 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) ∈ 𝐵𝑗𝐵) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) ∈ 𝐵)
404399, 400, 402, 403syl3anc 1373 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) ∈ 𝐵)
4052, 3, 387, 338, 398, 358, 404, 332gsummptres2 33019 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))
406 eqid 2729 . . . . . . . . . . 11 (.g𝑅) = (.g𝑅)
4072, 3, 406, 387, 323, 354gsumhashmul 33027 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg 𝑎) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))))
408 simplr 768 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑋 = (𝑅 Σg 𝑎))
409292adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑅 ∈ Ring)
410353adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 ∈ (𝐵m 𝑆))
41175a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 0 ∈ V)
412303, 375sselid 3935 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑗 ∈ (V ∖ { 0 }))
413354adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 finSupp 0 )
414410, 411, 412, 413fsuppinisegfi 32643 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (𝑎 “ {𝑗}) ∈ Fin)
415 hashcl 14281 . . . . . . . . . . . . . . 15 ((𝑎 “ {𝑗}) ∈ Fin → (♯‘(𝑎 “ {𝑗})) ∈ ℕ0)
416414, 415syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑗})) ∈ ℕ0)
417416nn0zd 12515 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑗})) ∈ ℤ)
418332, 401sstrd 3948 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (ran 𝑎 ∖ { 0 }) ⊆ 𝐵)
419418sselda 3937 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑗𝐵)
420 eqid 2729 . . . . . . . . . . . . . . . . 17 (1r𝑅) = (1r𝑅)
421294, 406, 420zrhmulg 21434 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)))
422421adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)))
423422oveq1d 7368 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗) = (((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)) · 𝑗))
424 simpll 766 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → 𝑅 ∈ Ring)
425 simplr 768 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (♯‘(𝑎 “ {𝑗})) ∈ ℤ)
4262, 420ringidcl 20168 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
427426ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (1r𝑅) ∈ 𝐵)
428 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → 𝑗𝐵)
4292, 406, 4mulgass2 20212 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((♯‘(𝑎 “ {𝑗})) ∈ ℤ ∧ (1r𝑅) ∈ 𝐵𝑗𝐵)) → (((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)((1r𝑅) · 𝑗)))
430424, 425, 427, 428, 429syl13anc 1374 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)((1r𝑅) · 𝑗)))
4312, 4, 420ringlidm 20172 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑗𝐵) → ((1r𝑅) · 𝑗) = 𝑗)
432424, 431sylancom 588 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → ((1r𝑅) · 𝑗) = 𝑗)
433432oveq2d 7369 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → ((♯‘(𝑎 “ {𝑗}))(.g𝑅)((1r𝑅) · 𝑗)) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))
434423, 430, 4333eqtrd 2768 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))
435409, 417, 419, 434syl21anc 837 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))
436435mpteq2dva 5188 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗)) = (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗)))
437436oveq2d 7369 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))))
438407, 408, 4373eqtr4d 2774 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑋 = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))))
439386, 405, 4383eqtr4rd 2775 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))
440367, 439jca 511 . . . . . . 7 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)))))
441340, 348, 440rspcedvd 3581 . . . . . 6 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))))
442441exp41 434 . . . . 5 ((𝜑𝑎 ∈ (𝐵m 𝑆)) → (𝑎 finSupp 0 → (𝑋 = (𝑅 Σg 𝑎) → (∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘 → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))))))
4434423imp2 1350 . . . 4 (((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ (𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)) → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))))
444443r19.29an 3133 . . 3 ((𝜑 ∧ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)) → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))))
445291, 444impbida 800 . 2 (𝜑 → (∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ↔ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)))
44614, 445bitrd 279 1 (𝜑 → (𝑋 ∈ (𝑁 𝑆) ↔ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   cuni 4861   ciun 4944  Disj wdisj 5062   class class class wbr 5095  cmpt 5176   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353   supp csupp 8100  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  0cn0 12402  cz 12489  chash 14255  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  SubMndcsubmnd 18674  .gcmg 18964  SubGrpcsubg 19017  CMndccmn 19677  1rcur 20084  Ringcrg 20136   RingHom crh 20372  LIdealclidl 21131  RSpancrsp 21132  ringczring 21371  ℤRHomczrh 21424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-r1 9679  df-rank 9680  df-card 9854  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-rhm 20375  df-nzr 20416  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lbs 20997  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-dsmm 21657  df-frlm 21672  df-uvc 21708
This theorem is referenced by:  zarcmplem  33850
  Copyright terms: Public domain W3C validator