Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrspunidl Structured version   Visualization version   GIF version

Theorem elrspunidl 31615
Description: Elementhood to the span of a union of ideals. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypotheses
Ref Expression
elrspunidl.n 𝑁 = (RSpan‘𝑅)
elrspunidl.b 𝐵 = (Base‘𝑅)
elrspunidl.1 0 = (0g𝑅)
elrspunidl.x · = (.r𝑅)
elrspunidl.r (𝜑𝑅 ∈ Ring)
elrspunidl.i (𝜑𝑆 ⊆ (LIdeal‘𝑅))
Assertion
Ref Expression
elrspunidl (𝜑 → (𝑋 ∈ (𝑁 𝑆) ↔ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)))
Distinct variable groups:   0 ,𝑎,𝑘   · ,𝑎,𝑘   𝐵,𝑎,𝑘   𝑅,𝑎,𝑘   𝑆,𝑎,𝑘   𝑋,𝑎,𝑘   𝜑,𝑎,𝑘
Allowed substitution hints:   𝑁(𝑘,𝑎)

Proof of Theorem elrspunidl
Dummy variables 𝑏 𝑓 𝑖 𝑗 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrspunidl.n . . 3 𝑁 = (RSpan‘𝑅)
2 elrspunidl.b . . 3 𝐵 = (Base‘𝑅)
3 elrspunidl.1 . . 3 0 = (0g𝑅)
4 elrspunidl.x . . 3 · = (.r𝑅)
5 elrspunidl.r . . 3 (𝜑𝑅 ∈ Ring)
6 elrspunidl.i . . . . . . 7 (𝜑𝑆 ⊆ (LIdeal‘𝑅))
76sselda 3922 . . . . . 6 ((𝜑𝑖𝑆) → 𝑖 ∈ (LIdeal‘𝑅))
8 eqid 2739 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
92, 8lidlss 20490 . . . . . 6 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
107, 9syl 17 . . . . 5 ((𝜑𝑖𝑆) → 𝑖𝐵)
1110ralrimiva 3104 . . . 4 (𝜑 → ∀𝑖𝑆 𝑖𝐵)
12 unissb 4874 . . . 4 ( 𝑆𝐵 ↔ ∀𝑖𝑆 𝑖𝐵)
1311, 12sylibr 233 . . 3 (𝜑 𝑆𝐵)
141, 2, 3, 4, 5, 13elrsp 31578 . 2 (𝜑 → (𝑋 ∈ (𝑁 𝑆) ↔ ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))))
15 fvexd 6798 . . . . . . . . . 10 (𝜑 → (LIdeal‘𝑅) ∈ V)
1615, 6ssexd 5249 . . . . . . . . 9 (𝜑𝑆 ∈ V)
1716uniexd 7604 . . . . . . . 8 (𝜑 𝑆 ∈ V)
18 eluni2 4844 . . . . . . . . . . 11 (𝑗 𝑆 ↔ ∃𝑖𝑆 𝑗𝑖)
1918biimpi 215 . . . . . . . . . 10 (𝑗 𝑆 → ∃𝑖𝑆 𝑗𝑖)
2019adantl 482 . . . . . . . . 9 ((𝜑𝑗 𝑆) → ∃𝑖𝑆 𝑗𝑖)
2120ralrimiva 3104 . . . . . . . 8 (𝜑 → ∀𝑗 𝑆𝑖𝑆 𝑗𝑖)
22 eleq2 2828 . . . . . . . . 9 (𝑖 = (𝑓𝑗) → (𝑗𝑖𝑗 ∈ (𝑓𝑗)))
2322ac6sg 10253 . . . . . . . 8 ( 𝑆 ∈ V → (∀𝑗 𝑆𝑖𝑆 𝑗𝑖 → ∃𝑓(𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))))
2417, 21, 23sylc 65 . . . . . . 7 (𝜑 → ∃𝑓(𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)))
2524ad3antrrr 727 . . . . . 6 ((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) → ∃𝑓(𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)))
26 simp-5l 782 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝜑)
2726adantr 481 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → 𝜑)
28 ringcmn 19829 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2927, 5, 283syl 18 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → 𝑅 ∈ CMnd)
30 vex 3437 . . . . . . . . . . . . 13 𝑓 ∈ V
31 cnvexg 7780 . . . . . . . . . . . . 13 (𝑓 ∈ V → 𝑓 ∈ V)
32 imaexg 7771 . . . . . . . . . . . . 13 (𝑓 ∈ V → (𝑓 “ {𝑖}) ∈ V)
3330, 31, 32mp2b 10 . . . . . . . . . . . 12 (𝑓 “ {𝑖}) ∈ V
3433a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑓 “ {𝑖}) ∈ V)
355ad7antr 735 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑅 ∈ Ring)
36 elmapi 8646 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝐵m 𝑆) → 𝑏: 𝑆𝐵)
3736ad7antlr 736 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑏: 𝑆𝐵)
38 cnvimass 5992 . . . . . . . . . . . . . . . . 17 (𝑓 “ {𝑖}) ⊆ dom 𝑓
39 fdm 6618 . . . . . . . . . . . . . . . . 17 (𝑓: 𝑆𝑆 → dom 𝑓 = 𝑆)
4038, 39sseqtrid 3974 . . . . . . . . . . . . . . . 16 (𝑓: 𝑆𝑆 → (𝑓 “ {𝑖}) ⊆ 𝑆)
4140ad3antlr 728 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑓 “ {𝑖}) ⊆ 𝑆)
4241sselda 3922 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑙 𝑆)
4337, 42ffvelrnd 6971 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → (𝑏𝑙) ∈ 𝐵)
4413ad7antr 735 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑆𝐵)
4544, 42sseldd 3923 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → 𝑙𝐵)
462, 4ringcl 19809 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑏𝑙) ∈ 𝐵𝑙𝐵) → ((𝑏𝑙) · 𝑙) ∈ 𝐵)
4735, 43, 45, 46syl3anc 1370 . . . . . . . . . . . 12 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑖})) → ((𝑏𝑙) · 𝑙) ∈ 𝐵)
48 fveq2 6783 . . . . . . . . . . . . . 14 (𝑗 = 𝑙 → (𝑏𝑗) = (𝑏𝑙))
49 id 22 . . . . . . . . . . . . . 14 (𝑗 = 𝑙𝑗 = 𝑙)
5048, 49oveq12d 7302 . . . . . . . . . . . . 13 (𝑗 = 𝑙 → ((𝑏𝑗) · 𝑗) = ((𝑏𝑙) · 𝑙))
5150cbvmptv 5188 . . . . . . . . . . . 12 (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑙 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑙) · 𝑙))
5247, 51fmptd 6997 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)):(𝑓 “ {𝑖})⟶𝐵)
5334mptexd 7109 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V)
5452ffund 6613 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → Fun (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))
55 simp-5r 783 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → 𝑏 finSupp 0 )
56 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑗((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 )
57 nfcv 2908 . . . . . . . . . . . . . . . . . . 19 𝑗𝑅
58 nfcv 2908 . . . . . . . . . . . . . . . . . . 19 𝑗 Σg
59 nfmpt1 5183 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))
6057, 58, 59nfov 7314 . . . . . . . . . . . . . . . . . 18 𝑗(𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))
6160nfeq2 2925 . . . . . . . . . . . . . . . . 17 𝑗 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))
6256, 61nfan 1903 . . . . . . . . . . . . . . . 16 𝑗(((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))
63 nfv 1918 . . . . . . . . . . . . . . . 16 𝑗 𝑓: 𝑆𝑆
6462, 63nfan 1903 . . . . . . . . . . . . . . 15 𝑗((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆)
65 nfra1 3145 . . . . . . . . . . . . . . 15 𝑗𝑗 𝑆𝑗 ∈ (𝑓𝑗)
6664, 65nfan 1903 . . . . . . . . . . . . . 14 𝑗(((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))
67 nfv 1918 . . . . . . . . . . . . . 14 𝑗 𝑖𝑆
6866, 67nfan 1903 . . . . . . . . . . . . 13 𝑗((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆)
69 nfcv 2908 . . . . . . . . . . . . 13 𝑗(𝑓 “ {𝑖})
70 nfcv 2908 . . . . . . . . . . . . 13 𝑗(𝑏 supp 0 )
7136ad7antlr 736 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑏: 𝑆𝐵)
7271ffnd 6610 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑏 Fn 𝑆)
7326, 17syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆 ∈ V)
7473ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑆 ∈ V)
753fvexi 6797 . . . . . . . . . . . . . . . . 17 0 ∈ V
7675a1i 11 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 0 ∈ V)
7741ssdifd 4076 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 )) ⊆ ( 𝑆 ∖ (𝑏 supp 0 )))
7877sselda 3922 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
7972, 74, 76, 78fvdifsupp 31027 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
8079oveq1d 7299 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
815ad7antr 735 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑅 ∈ Ring)
8213ad7antr 735 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑆𝐵)
8378eldifad 3900 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑗 𝑆)
8482, 83sseldd 3923 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → 𝑗𝐵)
852, 4, 3ringlz 19835 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑗𝐵) → ( 0 · 𝑗) = 0 )
8681, 84, 85syl2anc 584 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → ( 0 · 𝑗) = 0 )
8780, 86eqtrd 2779 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑖}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = 0 )
8868, 69, 70, 87, 34suppss2f 30983 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → ((𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))
89 fsuppsssupp 9153 . . . . . . . . . . . 12 ((((𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V ∧ Fun (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) ∧ (𝑏 finSupp 0 ∧ ((𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
9053, 54, 55, 88, 89syl22anc 836 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
912, 3, 29, 34, 52, 90gsumcl 19525 . . . . . . . . . 10 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) ∈ 𝐵)
9291fmpttd 6998 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))):𝑆𝐵)
932fvexi 6797 . . . . . . . . . . . 12 𝐵 ∈ V
9493a1i 11 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
9594, 16elmapd 8638 . . . . . . . . . 10 (𝜑 → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ (𝐵m 𝑆) ↔ (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))):𝑆𝐵))
9695biimpar 478 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))):𝑆𝐵) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ (𝐵m 𝑆))
9726, 92, 96syl2anc 584 . . . . . . . 8 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ (𝐵m 𝑆))
98 breq1 5078 . . . . . . . . . 10 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑎 finSupp 0 ↔ (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 ))
99 oveq2 7292 . . . . . . . . . . 11 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑅 Σg 𝑎) = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))))
10099eqeq2d 2750 . . . . . . . . . 10 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑋 = (𝑅 Σg 𝑎) ↔ 𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))))))
101 fveq1 6782 . . . . . . . . . . . 12 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (𝑎𝑘) = ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘))
102101eleq1d 2824 . . . . . . . . . . 11 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → ((𝑎𝑘) ∈ 𝑘 ↔ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘))
103102ralbidv 3113 . . . . . . . . . 10 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → (∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘 ↔ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘))
10498, 100, 1033anbi123d 1435 . . . . . . . . 9 (𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) → ((𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ↔ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) ∧ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)))
105104adantl 482 . . . . . . . 8 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑎 = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) → ((𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ↔ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) ∧ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)))
10626, 16syl 17 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆 ∈ V)
107106mptexd 7109 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ V)
10875a1i 11 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 0 ∈ V)
109 funmpt 6479 . . . . . . . . . . 11 Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))
110109a1i 11 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))))
111 simplr 766 . . . . . . . . . . . . 13 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑓: 𝑆𝑆)
112111ffund 6613 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Fun 𝑓)
113 simp-4r 781 . . . . . . . . . . . . 13 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑏 finSupp 0 )
114113fsuppimpd 9144 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑏 supp 0 ) ∈ Fin)
115 imafi 8967 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ (𝑏 supp 0 ) ∈ Fin) → (𝑓 “ (𝑏 supp 0 )) ∈ Fin)
116112, 114, 115syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑓 “ (𝑏 supp 0 )) ∈ Fin)
117 nfv 1918 . . . . . . . . . . . . . . . 16 𝑗 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))
11866, 117nfan 1903 . . . . . . . . . . . . . . 15 𝑗((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))))
119 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑓: 𝑆𝑆)
120119ffund 6613 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → Fun 𝑓)
121 snssi 4742 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))) → {𝑖} ⊆ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))))
122121adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → {𝑖} ⊆ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 ))))
123 sspreima 6954 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝑓 ∧ {𝑖} ⊆ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))))
124120, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))))
125 difpreima 6951 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝑓 → (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) = ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))))
126120, 125syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) = ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))))
127124, 126sseqtrd 3962 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))))
128 suppssdm 8002 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 supp 0 ) ⊆ dom 𝑏
12936ad6antlr 734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑏: 𝑆𝐵)
130128, 129fssdm 6629 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ 𝑆)
131119fdmd 6620 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → dom 𝑓 = 𝑆)
132130, 131sseqtrrd 3963 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ dom 𝑓)
133 sseqin2 4150 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 supp 0 ) ⊆ dom 𝑓 ↔ (dom 𝑓 ∩ (𝑏 supp 0 )) = (𝑏 supp 0 ))
134133biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏 supp 0 ) ⊆ dom 𝑓 → (dom 𝑓 ∩ (𝑏 supp 0 )) = (𝑏 supp 0 ))
135 dminss 6061 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑓 ∩ (𝑏 supp 0 )) ⊆ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))
136134, 135eqsstrrdi 3977 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 supp 0 ) ⊆ dom 𝑓 → (𝑏 supp 0 ) ⊆ (𝑓 “ (𝑓 “ (𝑏 supp 0 ))))
137132, 136syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ (𝑓 “ (𝑓 “ (𝑏 supp 0 ))))
138137sscond 4077 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → ((𝑓𝑆) ∖ (𝑓 “ (𝑓 “ (𝑏 supp 0 )))) ⊆ ((𝑓𝑆) ∖ (𝑏 supp 0 )))
139127, 138sstrd 3932 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ ((𝑓𝑆) ∖ (𝑏 supp 0 )))
140 fimacnv 6631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓: 𝑆𝑆 → (𝑓𝑆) = 𝑆)
141119, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓𝑆) = 𝑆)
142141difeq1d 4057 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → ((𝑓𝑆) ∖ (𝑏 supp 0 )) = ( 𝑆 ∖ (𝑏 supp 0 )))
143139, 142sseqtrd 3962 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ ( 𝑆 ∖ (𝑏 supp 0 )))
144143sselda 3922 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
145 ssidd 3945 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑏 supp 0 ) ⊆ (𝑏 supp 0 ))
14673adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑆 ∈ V)
14775a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 0 ∈ V)
148129, 145, 146, 147suppssr 8021 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
149144, 148syldan 591 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → (𝑏𝑗) = 0 )
150149oveq1d 7299 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
1515ad7antr 735 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑅 ∈ Ring)
15213ad7antr 735 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑆𝐵)
15340ad3antlr 728 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑓 “ {𝑖}) ⊆ 𝑆)
154153sselda 3922 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑗 𝑆)
155152, 154sseldd 3923 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → 𝑗𝐵)
156151, 155, 85syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → ( 0 · 𝑗) = 0 )
157150, 156eqtrd 2779 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) ∧ 𝑗 ∈ (𝑓 “ {𝑖})) → ((𝑏𝑗) · 𝑗) = 0 )
158118, 157mpteq2da 5173 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 ))
159158oveq2d 7300 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 )))
1605, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ CMnd)
161160cmnmndd 19418 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Mnd)
162161ad6antr 733 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → 𝑅 ∈ Mnd)
1633gsumz 18483 . . . . . . . . . . . . . 14 ((𝑅 ∈ Mnd ∧ (𝑓 “ {𝑖}) ∈ V) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 )) = 0 )
164162, 33, 163sylancl 586 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ 0 )) = 0 )
165159, 164eqtrd 2779 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖 ∈ (𝑆 ∖ (𝑓 “ (𝑏 supp 0 )))) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) = 0 )
166165, 106suppss2 8025 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ⊆ (𝑓 “ (𝑏 supp 0 )))
167116, 166ssfid 9051 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ∈ Fin)
168 isfsupp 9141 . . . . . . . . . . 11 (((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ V ∧ 0 ∈ V) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 ↔ (Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∧ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ∈ Fin)))
169168biimpar 478 . . . . . . . . . 10 ((((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∈ V ∧ 0 ∈ V) ∧ (Fun (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) ∧ ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) supp 0 ) ∈ Fin)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 )
170107, 108, 110, 167, 169syl22anc 836 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0 )
171 simpllr 773 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))
17226, 160syl 17 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑅 ∈ CMnd)
1735ad6antr 733 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → 𝑅 ∈ Ring)
17436ad5antlr 732 . . . . . . . . . . . . . 14 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑏: 𝑆𝐵)
175174ffvelrnda 6970 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → (𝑏𝑗) ∈ 𝐵)
17626, 13syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆𝐵)
177176sselda 3922 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → 𝑗𝐵)
1782, 4ringcl 19809 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑏𝑗) ∈ 𝐵𝑗𝐵) → ((𝑏𝑗) · 𝑗) ∈ 𝐵)
179173, 175, 177, 178syl3anc 1370 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 𝑆) → ((𝑏𝑗) · 𝑗) ∈ 𝐵)
180 eqid 2739 . . . . . . . . . . . 12 (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))
18166, 179, 180fmptdf 7000 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)): 𝑆𝐵)
18273mptexd 7109 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ∈ V)
183 funmpt 6479 . . . . . . . . . . . . 13 Fun (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))
184183a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Fun (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))
185 nfcv 2908 . . . . . . . . . . . . 13 𝑗 𝑆
186174adantr 481 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑏: 𝑆𝐵)
187186ffnd 6610 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑏 Fn 𝑆)
18873adantr 481 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑆 ∈ V)
18975a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 0 ∈ V)
190 simpr 485 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
191187, 188, 189, 190fvdifsupp 31027 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
192191oveq1d 7299 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
1935ad6antr 733 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑅 ∈ Ring)
194176adantr 481 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑆𝐵)
195190eldifad 3900 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑗 𝑆)
196194, 195sseldd 3923 . . . . . . . . . . . . . . 15 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → 𝑗𝐵)
197193, 196, 85syl2anc 584 . . . . . . . . . . . . . 14 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → ( 0 · 𝑗) = 0 )
198192, 197eqtrd 2779 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = 0 )
19966, 185, 70, 198, 73suppss2f 30983 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))
200 fsuppsssupp 9153 . . . . . . . . . . . 12 ((((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ∈ V ∧ Fun (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) ∧ (𝑏 finSupp 0 ∧ ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
201182, 184, 113, 199, 200syl22anc 836 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
202 sndisj 5066 . . . . . . . . . . . 12 Disj 𝑖𝑆 {𝑖}
203 disjpreima 30932 . . . . . . . . . . . 12 ((Fun 𝑓Disj 𝑖𝑆 {𝑖}) → Disj 𝑖𝑆 (𝑓 “ {𝑖}))
204112, 202, 203sylancl 586 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → Disj 𝑖𝑆 (𝑓 “ {𝑖}))
205 iunid 4991 . . . . . . . . . . . . 13 𝑖𝑆 {𝑖} = 𝑆
206205imaeq2i 5970 . . . . . . . . . . . 12 (𝑓 𝑖𝑆 {𝑖}) = (𝑓𝑆)
207 iunpreima 30913 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 𝑖𝑆 {𝑖}) = 𝑖𝑆 (𝑓 “ {𝑖}))
208112, 207syl 17 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑓 𝑖𝑆 {𝑖}) = 𝑖𝑆 (𝑓 “ {𝑖}))
209140ad2antlr 724 . . . . . . . . . . . 12 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑓𝑆) = 𝑆)
210206, 208, 2093eqtr3a 2803 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑖𝑆 (𝑓 “ {𝑖}) = 𝑆)
2112, 3, 172, 73, 106, 181, 201, 204, 210gsumpart 31324 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖}))))))
21241resmptd 5951 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖})) = (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))
213212oveq2d 7300 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑖𝑆) → (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖}))) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))
214213mpteq2dva 5175 . . . . . . . . . . 11 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑖𝑆 ↦ (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖})))) = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))))
215214oveq2d 7300 . . . . . . . . . 10 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg ((𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) ↾ (𝑓 “ {𝑖}))))) = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))))
216171, 211, 2153eqtrd 2783 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))))
217 eqid 2739 . . . . . . . . . . . 12 (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) = (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))
218 simpr 485 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘)
219218sneqd 4574 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → {𝑖} = {𝑘})
220219imaeq2d 5972 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → (𝑓 “ {𝑖}) = (𝑓 “ {𝑘}))
221220mpteq1d 5170 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)))
222221oveq2d 7300 . . . . . . . . . . . 12 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑖 = 𝑘) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))))
223 simpr 485 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑘𝑆)
224 ovexd 7319 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))) ∈ V)
225217, 222, 223, 224fvmptd2 6892 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) = (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))))
226160ad6antr 733 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑅 ∈ CMnd)
22730cnvex 7781 . . . . . . . . . . . . . 14 𝑓 ∈ V
228227imaex 7772 . . . . . . . . . . . . 13 (𝑓 “ {𝑘}) ∈ V
229228a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑓 “ {𝑘}) ∈ V)
2305ad6antr 733 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑅 ∈ Ring)
23126, 6syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → 𝑆 ⊆ (LIdeal‘𝑅))
232231sselda 3922 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑘 ∈ (LIdeal‘𝑅))
2338lidlsubg 20495 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (SubGrp‘𝑅))
234 subgsubm 18786 . . . . . . . . . . . . . 14 (𝑘 ∈ (SubGrp‘𝑅) → 𝑘 ∈ (SubMnd‘𝑅))
235233, 234syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (SubMnd‘𝑅))
236230, 232, 235syl2anc 584 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑘 ∈ (SubMnd‘𝑅))
237230adantr 481 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑅 ∈ Ring)
238232adantr 481 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑘 ∈ (LIdeal‘𝑅))
23936ad7antlr 736 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑏: 𝑆𝐵)
240 cnvimass 5992 . . . . . . . . . . . . . . . . . 18 (𝑓 “ {𝑘}) ⊆ dom 𝑓
241240, 39sseqtrid 3974 . . . . . . . . . . . . . . . . 17 (𝑓: 𝑆𝑆 → (𝑓 “ {𝑘}) ⊆ 𝑆)
242241ad3antlr 728 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑓 “ {𝑘}) ⊆ 𝑆)
243242sselda 3922 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑙 𝑆)
244239, 243ffvelrnd 6971 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → (𝑏𝑙) ∈ 𝐵)
245 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑙 → (𝑓𝑗) = (𝑓𝑙))
24649, 245eleq12d 2834 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑙 → (𝑗 ∈ (𝑓𝑗) ↔ 𝑙 ∈ (𝑓𝑙)))
247 simpllr 773 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))
248246, 247, 243rspcdva 3563 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑙 ∈ (𝑓𝑙))
249 simp-4r 781 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑓: 𝑆𝑆)
250249ffnd 6610 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑓 Fn 𝑆)
251 elpreima 6944 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn 𝑆 → (𝑙 ∈ (𝑓 “ {𝑘}) ↔ (𝑙 𝑆 ∧ (𝑓𝑙) ∈ {𝑘})))
252251biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝑓 Fn 𝑆𝑙 ∈ (𝑓 “ {𝑘})) → (𝑙 𝑆 ∧ (𝑓𝑙) ∈ {𝑘}))
253 elsni 4579 . . . . . . . . . . . . . . . . 17 ((𝑓𝑙) ∈ {𝑘} → (𝑓𝑙) = 𝑘)
254252, 253simpl2im 504 . . . . . . . . . . . . . . . 16 ((𝑓 Fn 𝑆𝑙 ∈ (𝑓 “ {𝑘})) → (𝑓𝑙) = 𝑘)
255250, 254sylancom 588 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → (𝑓𝑙) = 𝑘)
256248, 255eleqtrd 2842 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → 𝑙𝑘)
2578, 2, 4lidlmcl 20497 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ((𝑏𝑙) ∈ 𝐵𝑙𝑘)) → ((𝑏𝑙) · 𝑙) ∈ 𝑘)
258237, 238, 244, 256, 257syl22anc 836 . . . . . . . . . . . . 13 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑙 ∈ (𝑓 “ {𝑘})) → ((𝑏𝑙) · 𝑙) ∈ 𝑘)
25950cbvmptv 5188 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) = (𝑙 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑙) · 𝑙))
260258, 259fmptd 6997 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)):(𝑓 “ {𝑘})⟶𝑘)
261229mptexd 7109 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V)
262260ffund 6613 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → Fun (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)))
263 simp-5r 783 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → 𝑏 finSupp 0 )
264 nfv 1918 . . . . . . . . . . . . . . 15 𝑗 𝑘𝑆
26566, 264nfan 1903 . . . . . . . . . . . . . 14 𝑗((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆)
266 nfcv 2908 . . . . . . . . . . . . . 14 𝑗(𝑓 “ {𝑘})
26736ad7antlr 736 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑏: 𝑆𝐵)
268267ffnd 6610 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑏 Fn 𝑆)
26973ad2antrr 723 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑆 ∈ V)
27075a1i 11 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 0 ∈ V)
271242ssdifd 4076 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 )) ⊆ ( 𝑆 ∖ (𝑏 supp 0 )))
272271sselda 3922 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑗 ∈ ( 𝑆 ∖ (𝑏 supp 0 )))
273268, 269, 270, 272fvdifsupp 31027 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → (𝑏𝑗) = 0 )
274273oveq1d 7299 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = ( 0 · 𝑗))
27513ad7antr 735 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑆𝐵)
276272eldifad 3900 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑗 𝑆)
277275, 276sseldd 3923 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → 𝑗𝐵)
278230, 277, 85syl2an2r 682 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → ( 0 · 𝑗) = 0 )
279274, 278eqtrd 2779 . . . . . . . . . . . . . 14 ((((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) ∧ 𝑗 ∈ ((𝑓 “ {𝑘}) ∖ (𝑏 supp 0 ))) → ((𝑏𝑗) · 𝑗) = 0 )
280265, 266, 70, 279, 229suppss2f 30983 . . . . . . . . . . . . 13 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))
281 fsuppsssupp 9153 . . . . . . . . . . . . 13 ((((𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) ∈ V ∧ Fun (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))) ∧ (𝑏 finSupp 0 ∧ ((𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) supp 0 ) ⊆ (𝑏 supp 0 ))) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
282261, 262, 263, 280, 281syl22anc 836 . . . . . . . . . . . 12 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗)) finSupp 0 )
2833, 226, 229, 236, 260, 282gsumsubmcl 19529 . . . . . . . . . . 11 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑘}) ↦ ((𝑏𝑗) · 𝑗))) ∈ 𝑘)
284225, 283eqeltrd 2840 . . . . . . . . . 10 (((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) ∧ 𝑘𝑆) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)
285284ralrimiva 3104 . . . . . . . . 9 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘)
286170, 216, 2853jca 1127 . . . . . . . 8 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗)))) finSupp 0𝑋 = (𝑅 Σg (𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))) ∧ ∀𝑘𝑆 ((𝑖𝑆 ↦ (𝑅 Σg (𝑗 ∈ (𝑓 “ {𝑖}) ↦ ((𝑏𝑗) · 𝑗))))‘𝑘) ∈ 𝑘))
28797, 105, 286rspcedvd 3564 . . . . . . 7 ((((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ 𝑓: 𝑆𝑆) ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗)) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
288287anasss 467 . . . . . 6 (((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ∧ (𝑓: 𝑆𝑆 ∧ ∀𝑗 𝑆𝑗 ∈ (𝑓𝑗))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
28925, 288exlimddv 1939 . . . . 5 ((((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
290289anasss 467 . . . 4 (((𝜑𝑏 ∈ (𝐵m 𝑆)) ∧ (𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
291290r19.29an 3218 . . 3 ((𝜑 ∧ ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))) → ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘))
2925ad4antr 729 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑅 ∈ Ring)
293292adantr 481 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑅 ∈ Ring)
294 eqid 2739 . . . . . . . . . . . . . 14 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
295294zrhrhm 20722 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
296 zringbas 20685 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
297296, 2rhmf 19979 . . . . . . . . . . . . 13 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶𝐵)
298293, 295, 2973syl 18 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (ℤRHom‘𝑅):ℤ⟶𝐵)
299 simp-5r 783 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 ∈ (𝐵m 𝑆))
30075a1i 11 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 0 ∈ V)
301 ssv 3946 . . . . . . . . . . . . . . . . . 18 ran 𝑎 ⊆ V
302 ssdif 4075 . . . . . . . . . . . . . . . . . 18 (ran 𝑎 ⊆ V → (ran 𝑎 ∖ { 0 }) ⊆ (V ∖ { 0 }))
303301, 302ax-mp 5 . . . . . . . . . . . . . . . . 17 (ran 𝑎 ∖ { 0 }) ⊆ (V ∖ { 0 })
304303sseli 3918 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ran 𝑎 ∖ { 0 }) → 𝑚 ∈ (V ∖ { 0 }))
305304adantl 482 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑚 ∈ (V ∖ { 0 }))
306 simp-4r 781 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 finSupp 0 )
307299, 300, 305, 306fsuppinisegfi 31030 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (𝑎 “ {𝑚}) ∈ Fin)
308 hashcl 14080 . . . . . . . . . . . . . 14 ((𝑎 “ {𝑚}) ∈ Fin → (♯‘(𝑎 “ {𝑚})) ∈ ℕ0)
309307, 308syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑚})) ∈ ℕ0)
310309nn0zd 12433 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑚})) ∈ ℤ)
311298, 310ffvelrnd 6971 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑚 ∈ (ran 𝑎 ∖ { 0 })) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))) ∈ 𝐵)
312 eqid 2739 . . . . . . . . . . 11 (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) = (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))))
313311, 312fmptd 6997 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))):(ran 𝑎 ∖ { 0 })⟶𝐵)
3142, 3ring0cl 19817 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0𝐵)
315 fconst6g 6672 . . . . . . . . . . 11 ( 0𝐵 → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }):( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))⟶𝐵)
316292, 314, 3153syl 18 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }):( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))⟶𝐵)
317 disjdif 4406 . . . . . . . . . . 11 ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅
318317a1i 11 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅)
319313, 316, 318fun2d 6647 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })):((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))⟶𝐵)
320 simplll 772 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝜑𝑎 ∈ (𝐵m 𝑆)))
32194, 16elmapd 8638 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎 ∈ (𝐵m 𝑆) ↔ 𝑎:𝑆𝐵))
322321biimpa 477 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (𝐵m 𝑆)) → 𝑎:𝑆𝐵)
323320, 322syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎:𝑆𝐵)
324323ffnd 6610 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎 Fn 𝑆)
325 elssuni 4872 . . . . . . . . . . . . . . . . 17 (𝑘𝑆𝑘 𝑆)
326325adantl 482 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ 𝑘𝑆) → 𝑘 𝑆)
327326sseld 3921 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ 𝑘𝑆) → ((𝑎𝑘) ∈ 𝑘 → (𝑎𝑘) ∈ 𝑆))
328327ralimdva 3109 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) → (∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘 → ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑆))
329328imp 407 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑆)
330 fnfvrnss 7003 . . . . . . . . . . . . 13 ((𝑎 Fn 𝑆 ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑆) → ran 𝑎 𝑆)
331324, 329, 330syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ran 𝑎 𝑆)
332331ssdifssd 4078 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (ran 𝑎 ∖ { 0 }) ⊆ 𝑆)
333 undif 4416 . . . . . . . . . . 11 ((ran 𝑎 ∖ { 0 }) ⊆ 𝑆 ↔ ((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = 𝑆)
334332, 333sylib 217 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = 𝑆)
335334feq2d 6595 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })):((ran 𝑎 ∖ { 0 }) ∪ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))⟶𝐵 ↔ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })): 𝑆𝐵))
336319, 335mpbid 231 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })): 𝑆𝐵)
33793a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝐵 ∈ V)
33817ad4antr 729 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑆 ∈ V)
339337, 338elmapd 8638 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ (𝐵m 𝑆) ↔ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })): 𝑆𝐵))
340336, 339mpbird 256 . . . . . . 7 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ (𝐵m 𝑆))
341 breq1 5078 . . . . . . . . 9 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑏 finSupp 0 ↔ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 ))
342 fveq1 6782 . . . . . . . . . . . . 13 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑏𝑗) = (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗))
343342oveq1d 7299 . . . . . . . . . . . 12 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → ((𝑏𝑗) · 𝑗) = ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))
344343mpteq2dv 5177 . . . . . . . . . . 11 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)) = (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)))
345344oveq2d 7300 . . . . . . . . . 10 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))
346345eqeq2d 2750 . . . . . . . . 9 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → (𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))) ↔ 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)))))
347341, 346anbi12d 631 . . . . . . . 8 (𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) → ((𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ↔ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))))
348347adantl 482 . . . . . . 7 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑏 = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))) → ((𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ↔ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))))
349319ffund 6613 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → Fun ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })))
350340elexd 3453 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ V)
35175a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 0 ∈ V)
352323ffund 6613 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → Fun 𝑎)
353320simprd 496 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎 ∈ (𝐵m 𝑆))
354 simpllr 773 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑎 finSupp 0 )
355 fsupprnfi 31035 . . . . . . . . . . . . 13 (((Fun 𝑎𝑎 ∈ (𝐵m 𝑆)) ∧ ( 0 ∈ V ∧ 𝑎 finSupp 0 )) → ran 𝑎 ∈ Fin)
356 diffi 8971 . . . . . . . . . . . . 13 (ran 𝑎 ∈ Fin → (ran 𝑎 ∖ { 0 }) ∈ Fin)
357355, 356syl 17 . . . . . . . . . . . 12 (((Fun 𝑎𝑎 ∈ (𝐵m 𝑆)) ∧ ( 0 ∈ V ∧ 𝑎 finSupp 0 )) → (ran 𝑎 ∖ { 0 }) ∈ Fin)
358352, 353, 351, 354, 357syl22anc 836 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (ran 𝑎 ∖ { 0 }) ∈ Fin)
359313, 358, 351fdmfifsupp 9147 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) finSupp 0 )
36013ssdifssd 4078 . . . . . . . . . . . . 13 (𝜑 → ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ⊆ 𝐵)
361360ad4antr 729 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ⊆ 𝐵)
362337, 361ssexd 5249 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ∈ V)
363362, 351fczfsuppd 9155 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) finSupp 0 )
364359, 363fsuppun 9156 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) supp 0 ) ∈ Fin)
365 funisfsupp 9142 . . . . . . . . . 10 ((Fun ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∧ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ V ∧ 0 ∈ V) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 ↔ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) supp 0 ) ∈ Fin))
366365biimpar 478 . . . . . . . . 9 (((Fun ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∧ ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) ∈ V ∧ 0 ∈ V) ∧ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) supp 0 ) ∈ Fin) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 )
367349, 350, 351, 364, 366syl31anc 1372 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0 )
368 fvex 6796 . . . . . . . . . . . . . . . 16 ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))) ∈ V
369368, 312fnmpti 6585 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) Fn (ran 𝑎 ∖ { 0 })
370369a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) Fn (ran 𝑎 ∖ { 0 }))
371 fnconstg 6671 . . . . . . . . . . . . . . . 16 ( 0 ∈ V → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))
37275, 371ax-mp 5 . . . . . . . . . . . . . . 15 (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))
373372a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))
374317a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅)
375 simpr 485 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑗 ∈ (ran 𝑎 ∖ { 0 }))
376370, 373, 374, 375fvun1d 6870 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))))‘𝑗))
377 sneq 4572 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → {𝑚} = {𝑗})
378377imaeq2d 5972 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → (𝑎 “ {𝑚}) = (𝑎 “ {𝑗}))
379378fveq2d 6787 . . . . . . . . . . . . . . 15 (𝑚 = 𝑗 → (♯‘(𝑎 “ {𝑚})) = (♯‘(𝑎 “ {𝑗})))
380379fveq2d 6787 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))) = ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))))
381 fvexd 6798 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) ∈ V)
382312, 380, 375, 381fvmptd3 6907 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚}))))‘𝑗) = ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))))
383376, 382eqtrd 2779 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))))
384383oveq1d 7299 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) = (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))
385384mpteq2dva 5175 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)) = (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗)))
386385oveq2d 7300 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))))
387292, 28syl 17 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑅 ∈ CMnd)
388317a1i 11 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅)
389 fvun2 6869 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) Fn (ran 𝑎 ∖ { 0 }) ∧ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }) Fn ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) ∧ (((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅ ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗))
390369, 372, 389mp3an12 1450 . . . . . . . . . . . . . 14 ((((ran 𝑎 ∖ { 0 }) ∩ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) = ∅ ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗))
391388, 390sylancom 588 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗))
39275fvconst2 7088 . . . . . . . . . . . . . 14 (𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) → ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗) = 0 )
393392adantl 482 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })‘𝑗) = 0 )
394391, 393eqtrd 2779 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) = 0 )
395394oveq1d 7299 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) = ( 0 · 𝑗))
396361sselda 3922 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → 𝑗𝐵)
397292, 396, 85syl2an2r 682 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ( 0 · 𝑗) = 0 )
398395, 397eqtrd 2779 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ ( 𝑆 ∖ (ran 𝑎 ∖ { 0 }))) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) = 0 )
399292adantr 481 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → 𝑅 ∈ Ring)
400336ffvelrnda 6970 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) ∈ 𝐵)
40113ad4antr 729 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑆𝐵)
402401sselda 3922 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → 𝑗𝐵)
4032, 4ringcl 19809 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) ∈ 𝐵𝑗𝐵) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) ∈ 𝐵)
404399, 400, 402, 403syl3anc 1370 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 𝑆) → ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗) ∈ 𝐵)
4052, 3, 387, 338, 398, 358, 404, 332gsummptres2 31322 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))
406 eqid 2739 . . . . . . . . . . 11 (.g𝑅) = (.g𝑅)
4072, 3, 406, 387, 323, 354gsumhashmul 31325 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg 𝑎) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))))
408 simplr 766 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑋 = (𝑅 Σg 𝑎))
409292adantr 481 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑅 ∈ Ring)
410353adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 ∈ (𝐵m 𝑆))
41175a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 0 ∈ V)
412303, 375sselid 3920 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑗 ∈ (V ∖ { 0 }))
413354adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑎 finSupp 0 )
414410, 411, 412, 413fsuppinisegfi 31030 . . . . . . . . . . . . . . 15 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (𝑎 “ {𝑗}) ∈ Fin)
415 hashcl 14080 . . . . . . . . . . . . . . 15 ((𝑎 “ {𝑗}) ∈ Fin → (♯‘(𝑎 “ {𝑗})) ∈ ℕ0)
416414, 415syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑗})) ∈ ℕ0)
417416nn0zd 12433 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (♯‘(𝑎 “ {𝑗})) ∈ ℤ)
418332, 401sstrd 3932 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (ran 𝑎 ∖ { 0 }) ⊆ 𝐵)
419418sselda 3922 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → 𝑗𝐵)
420 eqid 2739 . . . . . . . . . . . . . . . . 17 (1r𝑅) = (1r𝑅)
421294, 406, 420zrhmulg 20720 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)))
422421adantr 481 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)))
423422oveq1d 7299 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗) = (((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)) · 𝑗))
424 simpll 764 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → 𝑅 ∈ Ring)
425 simplr 766 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (♯‘(𝑎 “ {𝑗})) ∈ ℤ)
4262, 420ringidcl 19816 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
427426ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (1r𝑅) ∈ 𝐵)
428 simpr 485 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → 𝑗𝐵)
4292, 406, 4mulgass2 19849 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((♯‘(𝑎 “ {𝑗})) ∈ ℤ ∧ (1r𝑅) ∈ 𝐵𝑗𝐵)) → (((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)((1r𝑅) · 𝑗)))
430424, 425, 427, 428, 429syl13anc 1371 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (((♯‘(𝑎 “ {𝑗}))(.g𝑅)(1r𝑅)) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)((1r𝑅) · 𝑗)))
4312, 4, 420ringlidm 19819 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑗𝐵) → ((1r𝑅) · 𝑗) = 𝑗)
432424, 431sylancom 588 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → ((1r𝑅) · 𝑗) = 𝑗)
433432oveq2d 7300 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → ((♯‘(𝑎 “ {𝑗}))(.g𝑅)((1r𝑅) · 𝑗)) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))
434423, 430, 4333eqtrd 2783 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ (♯‘(𝑎 “ {𝑗})) ∈ ℤ) ∧ 𝑗𝐵) → (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))
435409, 417, 419, 434syl21anc 835 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) ∧ 𝑗 ∈ (ran 𝑎 ∖ { 0 })) → (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗) = ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))
436435mpteq2dva 5175 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗)) = (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗)))
437436oveq2d 7300 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))) = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((♯‘(𝑎 “ {𝑗}))(.g𝑅)𝑗))))
438407, 408, 4373eqtr4d 2789 . . . . . . . . 9 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑋 = (𝑅 Σg (𝑗 ∈ (ran 𝑎 ∖ { 0 }) ↦ (((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑗}))) · 𝑗))))
439386, 405, 4383eqtr4rd 2790 . . . . . . . 8 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → 𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗))))
440367, 439jca 512 . . . . . . 7 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → (((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 })) finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((((𝑚 ∈ (ran 𝑎 ∖ { 0 }) ↦ ((ℤRHom‘𝑅)‘(♯‘(𝑎 “ {𝑚})))) ∪ (( 𝑆 ∖ (ran 𝑎 ∖ { 0 })) × { 0 }))‘𝑗) · 𝑗)))))
441340, 348, 440rspcedvd 3564 . . . . . 6 (((((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg 𝑎)) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘) → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))))
442441exp41 435 . . . . 5 ((𝜑𝑎 ∈ (𝐵m 𝑆)) → (𝑎 finSupp 0 → (𝑋 = (𝑅 Σg 𝑎) → (∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘 → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗))))))))
4434423imp2 1348 . . . 4 (((𝜑𝑎 ∈ (𝐵m 𝑆)) ∧ (𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)) → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))))
444443r19.29an 3218 . . 3 ((𝜑 ∧ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)) → ∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))))
445291, 444impbida 798 . 2 (𝜑 → (∃𝑏 ∈ (𝐵m 𝑆)(𝑏 finSupp 0𝑋 = (𝑅 Σg (𝑗 𝑆 ↦ ((𝑏𝑗) · 𝑗)))) ↔ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)))
44614, 445bitrd 278 1 (𝜑 → (𝑋 ∈ (𝑁 𝑆) ↔ ∃𝑎 ∈ (𝐵m 𝑆)(𝑎 finSupp 0𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘𝑆 (𝑎𝑘) ∈ 𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2107  wral 3065  wrex 3066  Vcvv 3433  cdif 3885  cun 3886  cin 3887  wss 3888  c0 4257  {csn 4562   cuni 4840   ciun 4925  Disj wdisj 5040   class class class wbr 5075  cmpt 5158   × cxp 5588  ccnv 5589  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284   supp csupp 7986  m cmap 8624  Fincfn 8742   finSupp cfsupp 9137  0cn0 12242  cz 12328  chash 14053  Basecbs 16921  .rcmulr 16972  0gc0g 17159   Σg cgsu 17160  Mndcmnd 18394  SubMndcsubmnd 18438  .gcmg 18709  SubGrpcsubg 18758  CMndccmn 19395  1rcur 19746  Ringcrg 19792   RingHom crh 19965  LIdealclidl 20441  RSpancrsp 20442  ringczring 20679  ℤRHomczrh 20710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-reg 9360  ax-inf2 9408  ax-ac2 10228  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-sup 9210  df-oi 9278  df-r1 9531  df-rank 9532  df-card 9706  df-ac 9881  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-fz 13249  df-fzo 13392  df-seq 13731  df-hash 14054  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-0g 17161  df-gsum 17162  df-prds 17167  df-pws 17169  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mhm 18439  df-submnd 18440  df-grp 18589  df-minusg 18590  df-sbg 18591  df-mulg 18710  df-subg 18761  df-ghm 18841  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-rnghom 19968  df-subrg 20031  df-lmod 20134  df-lss 20203  df-lsp 20243  df-lmhm 20293  df-lbs 20346  df-sra 20443  df-rgmod 20444  df-lidl 20445  df-rsp 20446  df-nzr 20538  df-cnfld 20607  df-zring 20680  df-zrh 20714  df-dsmm 20948  df-frlm 20963  df-uvc 20999
This theorem is referenced by:  zarcmplem  31840
  Copyright terms: Public domain W3C validator