Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem13 Structured version   Visualization version   GIF version

Theorem poimirlem13 36489
Description: Lemma for poimir 36509- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
Assertion
Ref Expression
poimirlem13 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦,𝑧   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝜑,𝑧   𝑓,𝐹,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑆,𝑗,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem13
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
21ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑁 ∈ ℕ)
3 poimirlem22.s . . . . . . . 8 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
4 poimirlem22.1 . . . . . . . . 9 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
54ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
6 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑧𝑆)
7 simprl 769 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd𝑧) = 0)
82, 3, 5, 6, 7poimirlem10 36486 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st𝑧)))
9 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑘𝑆)
10 simprr 771 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd𝑘) = 0)
112, 3, 5, 9, 10poimirlem10 36486 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st𝑘)))
128, 11eqtr3d 2774 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (1st ‘(1st𝑧)) = (1st ‘(1st𝑘)))
13 elrabi 3676 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
1413, 3eleq2s 2851 . . . . . . . . . . . . 13 (𝑧𝑆𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
15 xp1st 8003 . . . . . . . . . . . . 13 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1614, 15syl 17 . . . . . . . . . . . 12 (𝑧𝑆 → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
17 xp2nd 8004 . . . . . . . . . . . 12 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
1816, 17syl 17 . . . . . . . . . . 11 (𝑧𝑆 → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
19 fvex 6901 . . . . . . . . . . . 12 (2nd ‘(1st𝑧)) ∈ V
20 f1oeq1 6818 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑧)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)))
2119, 20elab 3667 . . . . . . . . . . 11 ((2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
2218, 21sylib 217 . . . . . . . . . 10 (𝑧𝑆 → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
23 f1ofn 6831 . . . . . . . . . 10 ((2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑧)) Fn (1...𝑁))
2422, 23syl 17 . . . . . . . . 9 (𝑧𝑆 → (2nd ‘(1st𝑧)) Fn (1...𝑁))
2524adantr 481 . . . . . . . 8 ((𝑧𝑆𝑘𝑆) → (2nd ‘(1st𝑧)) Fn (1...𝑁))
2625ad2antlr 725 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd ‘(1st𝑧)) Fn (1...𝑁))
27 elrabi 3676 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2827, 3eleq2s 2851 . . . . . . . . . . . . 13 (𝑘𝑆𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
29 xp1st 8003 . . . . . . . . . . . . 13 (𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
3028, 29syl 17 . . . . . . . . . . . 12 (𝑘𝑆 → (1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
31 xp2nd 8004 . . . . . . . . . . . 12 ((1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
3230, 31syl 17 . . . . . . . . . . 11 (𝑘𝑆 → (2nd ‘(1st𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
33 fvex 6901 . . . . . . . . . . . 12 (2nd ‘(1st𝑘)) ∈ V
34 f1oeq1 6818 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑘)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁)))
3533, 34elab 3667 . . . . . . . . . . 11 ((2nd ‘(1st𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁))
3632, 35sylib 217 . . . . . . . . . 10 (𝑘𝑆 → (2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁))
37 f1ofn 6831 . . . . . . . . . 10 ((2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑘)) Fn (1...𝑁))
3836, 37syl 17 . . . . . . . . 9 (𝑘𝑆 → (2nd ‘(1st𝑘)) Fn (1...𝑁))
3938adantl 482 . . . . . . . 8 ((𝑧𝑆𝑘𝑆) → (2nd ‘(1st𝑘)) Fn (1...𝑁))
4039ad2antlr 725 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd ‘(1st𝑘)) Fn (1...𝑁))
41 eleq1 2821 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑁) ↔ 𝑛 ∈ (1...𝑁)))
4241anbi2d 629 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) ↔ (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁))))
43 oveq2 7413 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
4443imaeq2d 6057 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑧)) “ (1...𝑛)))
4543imaeq2d 6057 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((2nd ‘(1st𝑘)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))
4644, 45eqeq12d 2748 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚)) ↔ ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛))))
4742, 46imbi12d 344 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚))) ↔ ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))))
481ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
494ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
50 simpl 483 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑘𝑆) → 𝑧𝑆)
5150ad3antlr 729 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑧𝑆)
52 simplrl 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → (2nd𝑧) = 0)
53 simpr 485 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑘𝑆) → 𝑘𝑆)
5453ad3antlr 729 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑘𝑆)
55 simplrr 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → (2nd𝑘) = 0)
56 simpr 485 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ (1...𝑁))
5748, 3, 49, 51, 52, 54, 55, 56poimirlem11 36487 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) ⊆ ((2nd ‘(1st𝑘)) “ (1...𝑚)))
5848, 3, 49, 54, 55, 51, 52, 56poimirlem11 36487 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑘)) “ (1...𝑚)) ⊆ ((2nd ‘(1st𝑧)) “ (1...𝑚)))
5957, 58eqssd 3998 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚)))
6047, 59chvarvv 2002 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))
61 simpll 765 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝜑)
62 elfznn 13526 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
63 nnm1nn0 12509 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
6462, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ ℕ0)
6564adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1) → (𝑛 − 1) ∈ ℕ0)
6662nncnd 12224 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
67 ax-1cn 11164 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
68 subeq0 11482 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) = 0 ↔ 𝑛 = 1))
6966, 67, 68sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = 0 ↔ 𝑛 = 1))
7069necon3abid 2977 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) ≠ 0 ↔ ¬ 𝑛 = 1))
7170biimpar 478 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1) → (𝑛 − 1) ≠ 0)
72 elnnne0 12482 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℕ ↔ ((𝑛 − 1) ∈ ℕ0 ∧ (𝑛 − 1) ≠ 0))
7365, 71, 72sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1) → (𝑛 − 1) ∈ ℕ)
7473adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ∈ ℕ)
7564nn0red 12529 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ ℝ)
7675adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ∈ ℝ)
7762nnred 12223 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℝ)
7877adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
791nnred 12223 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℝ)
8079adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
8177lem1d 12143 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ≤ 𝑛)
8281adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ≤ 𝑛)
83 elfzle2 13501 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛𝑁)
8483adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛𝑁)
8576, 78, 80, 82, 84letrd 11367 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ≤ 𝑁)
8685adantrr 715 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ≤ 𝑁)
871nnzd 12581 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℤ)
88 fznn 13565 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → ((𝑛 − 1) ∈ (1...𝑁) ↔ ((𝑛 − 1) ∈ ℕ ∧ (𝑛 − 1) ≤ 𝑁)))
8987, 88syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑛 − 1) ∈ (1...𝑁) ↔ ((𝑛 − 1) ∈ ℕ ∧ (𝑛 − 1) ≤ 𝑁)))
9089adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → ((𝑛 − 1) ∈ (1...𝑁) ↔ ((𝑛 − 1) ∈ ℕ ∧ (𝑛 − 1) ≤ 𝑁)))
9174, 86, 90mpbir2and 711 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ∈ (1...𝑁))
9261, 91sylan 580 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ∈ (1...𝑁))
93 ovex 7438 . . . . . . . . . . . . . 14 (𝑛 − 1) ∈ V
94 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → (𝑚 ∈ (1...𝑁) ↔ (𝑛 − 1) ∈ (1...𝑁)))
9594anbi2d 629 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) ↔ (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 − 1) ∈ (1...𝑁))))
96 oveq2 7413 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (1...𝑚) = (1...(𝑛 − 1)))
9796imaeq2d 6057 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))))
9896imaeq2d 6057 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((2nd ‘(1st𝑘)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
9997, 98eqeq12d 2748 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → (((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚)) ↔ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
10095, 99imbi12d 344 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 − 1) → (((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚))) ↔ ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 − 1) ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))))
10193, 100, 59vtocl 3549 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 − 1) ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
10292, 101syldan 591 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
103102expr 457 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (¬ 𝑛 = 1 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
104 ima0 6073 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑧)) “ ∅) = ∅
105 ima0 6073 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑘)) “ ∅) = ∅
106104, 105eqtr4i 2763 . . . . . . . . . . . 12 ((2nd ‘(1st𝑧)) “ ∅) = ((2nd ‘(1st𝑘)) “ ∅)
107 oveq1 7412 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
108 1m1e0 12280 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
109107, 108eqtrdi 2788 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 − 1) = 0)
110109oveq2d 7421 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1...(𝑛 − 1)) = (1...0))
111 fz10 13518 . . . . . . . . . . . . . 14 (1...0) = ∅
112110, 111eqtrdi 2788 . . . . . . . . . . . . 13 (𝑛 = 1 → (1...(𝑛 − 1)) = ∅)
113112imaeq2d 6057 . . . . . . . . . . . 12 (𝑛 = 1 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑧)) “ ∅))
114112imaeq2d 6057 . . . . . . . . . . . 12 (𝑛 = 1 → ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ ∅))
115106, 113, 1143eqtr4a 2798 . . . . . . . . . . 11 (𝑛 = 1 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
116103, 115pm2.61d2 181 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
11760, 116difeq12d 4122 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
118 fnsnfv 6967 . . . . . . . . . . . 12 (((2nd ‘(1st𝑧)) Fn (1...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = ((2nd ‘(1st𝑧)) “ {𝑛}))
11924, 118sylan 580 . . . . . . . . . . 11 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = ((2nd ‘(1st𝑧)) “ {𝑛}))
12062adantl 482 . . . . . . . . . . . . 13 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
121 uncom 4152 . . . . . . . . . . . . . . . 16 ((1...(𝑛 − 1)) ∪ {𝑛}) = ({𝑛} ∪ (1...(𝑛 − 1)))
122121difeq1i 4117 . . . . . . . . . . . . . . 15 (((1...(𝑛 − 1)) ∪ {𝑛}) ∖ (1...(𝑛 − 1))) = (({𝑛} ∪ (1...(𝑛 − 1))) ∖ (1...(𝑛 − 1)))
123 difun2 4479 . . . . . . . . . . . . . . 15 (({𝑛} ∪ (1...(𝑛 − 1))) ∖ (1...(𝑛 − 1))) = ({𝑛} ∖ (1...(𝑛 − 1)))
124122, 123eqtri 2760 . . . . . . . . . . . . . 14 (((1...(𝑛 − 1)) ∪ {𝑛}) ∖ (1...(𝑛 − 1))) = ({𝑛} ∖ (1...(𝑛 − 1)))
125 nncn 12216 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
126 npcan1 11635 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
127125, 126syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛 − 1) + 1) = 𝑛)
128 elnnuz 12862 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
129128biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
130127, 129eqeltrd 2833 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝑛 − 1) + 1) ∈ (ℤ‘1))
13163nn0zd 12580 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℤ)
132 uzid 12833 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) ∈ ℤ → (𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)))
133131, 132syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)))
134 peano2uz 12881 . . . . . . . . . . . . . . . . . . 19 ((𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)) → ((𝑛 − 1) + 1) ∈ (ℤ‘(𝑛 − 1)))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛 − 1) + 1) ∈ (ℤ‘(𝑛 − 1)))
136127, 135eqeltrrd 2834 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘(𝑛 − 1)))
137 fzsplit2 13522 . . . . . . . . . . . . . . . . 17 ((((𝑛 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ‘(𝑛 − 1))) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)))
138130, 136, 137syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)))
139127oveq1d 7420 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝑛 − 1) + 1)...𝑛) = (𝑛...𝑛))
140 nnz 12575 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
141 fzsn 13539 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ → (𝑛...𝑛) = {𝑛})
142140, 141syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛...𝑛) = {𝑛})
143139, 142eqtrd 2772 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛 − 1) + 1)...𝑛) = {𝑛})
144143uneq2d 4162 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)) = ((1...(𝑛 − 1)) ∪ {𝑛}))
145138, 144eqtrd 2772 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1...𝑛) = ((1...(𝑛 − 1)) ∪ {𝑛}))
146145difeq1d 4120 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((1...𝑛) ∖ (1...(𝑛 − 1))) = (((1...(𝑛 − 1)) ∪ {𝑛}) ∖ (1...(𝑛 − 1))))
147 nnre 12215 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
148 ltm1 12052 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → (𝑛 − 1) < 𝑛)
149 peano2rem 11523 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
150 ltnle 11289 . . . . . . . . . . . . . . . . . . 19 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1)))
151149, 150mpancom 686 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → ((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1)))
152148, 151mpbid 231 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → ¬ 𝑛 ≤ (𝑛 − 1))
153 elfzle2 13501 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑛 − 1)) → 𝑛 ≤ (𝑛 − 1))
154152, 153nsyl 140 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ → ¬ 𝑛 ∈ (1...(𝑛 − 1)))
155147, 154syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ¬ 𝑛 ∈ (1...(𝑛 − 1)))
156 incom 4200 . . . . . . . . . . . . . . . . 17 ((1...(𝑛 − 1)) ∩ {𝑛}) = ({𝑛} ∩ (1...(𝑛 − 1)))
157156eqeq1i 2737 . . . . . . . . . . . . . . . 16 (((1...(𝑛 − 1)) ∩ {𝑛}) = ∅ ↔ ({𝑛} ∩ (1...(𝑛 − 1))) = ∅)
158 disjsn 4714 . . . . . . . . . . . . . . . 16 (((1...(𝑛 − 1)) ∩ {𝑛}) = ∅ ↔ ¬ 𝑛 ∈ (1...(𝑛 − 1)))
159 disj3 4452 . . . . . . . . . . . . . . . 16 (({𝑛} ∩ (1...(𝑛 − 1))) = ∅ ↔ {𝑛} = ({𝑛} ∖ (1...(𝑛 − 1))))
160157, 158, 1593bitr3i 300 . . . . . . . . . . . . . . 15 𝑛 ∈ (1...(𝑛 − 1)) ↔ {𝑛} = ({𝑛} ∖ (1...(𝑛 − 1))))
161155, 160sylib 217 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → {𝑛} = ({𝑛} ∖ (1...(𝑛 − 1))))
162124, 146, 1613eqtr4a 2798 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((1...𝑛) ∖ (1...(𝑛 − 1))) = {𝑛})
163120, 162syl 17 . . . . . . . . . . . 12 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((1...𝑛) ∖ (1...(𝑛 − 1))) = {𝑛})
164163imaeq2d 6057 . . . . . . . . . . 11 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = ((2nd ‘(1st𝑧)) “ {𝑛}))
165 dff1o3 6836 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑧)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑧))))
166165simprbi 497 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑧)))
16722, 166syl 17 . . . . . . . . . . . . 13 (𝑧𝑆 → Fun (2nd ‘(1st𝑧)))
168 imadif 6629 . . . . . . . . . . . . 13 (Fun (2nd ‘(1st𝑧)) → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
169167, 168syl 17 . . . . . . . . . . . 12 (𝑧𝑆 → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
170169adantr 481 . . . . . . . . . . 11 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
171119, 164, 1703eqtr2d 2778 . . . . . . . . . 10 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
1726, 171sylan 580 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
173 eleq1 2821 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (𝑧𝑆𝑘𝑆))
174173anbi1d 630 . . . . . . . . . . . 12 (𝑧 = 𝑘 → ((𝑧𝑆𝑛 ∈ (1...𝑁)) ↔ (𝑘𝑆𝑛 ∈ (1...𝑁))))
175 2fveq3 6893 . . . . . . . . . . . . . . 15 (𝑧 = 𝑘 → (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘)))
176175fveq1d 6890 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((2nd ‘(1st𝑧))‘𝑛) = ((2nd ‘(1st𝑘))‘𝑛))
177176sneqd 4639 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → {((2nd ‘(1st𝑧))‘𝑛)} = {((2nd ‘(1st𝑘))‘𝑛)})
178175imaeq1d 6056 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))
179175imaeq1d 6056 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
180178, 179difeq12d 4122 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
181177, 180eqeq12d 2748 . . . . . . . . . . . 12 (𝑧 = 𝑘 → ({((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))) ↔ {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))))
182174, 181imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑘 → (((𝑧𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))))) ↔ ((𝑘𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))))
183182, 171chvarvv 2002 . . . . . . . . . 10 ((𝑘𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
1849, 183sylan 580 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
185117, 172, 1843eqtr4d 2782 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = {((2nd ‘(1st𝑘))‘𝑛)})
186 fvex 6901 . . . . . . . . 9 ((2nd ‘(1st𝑧))‘𝑛) ∈ V
187186sneqr 4840 . . . . . . . 8 ({((2nd ‘(1st𝑧))‘𝑛)} = {((2nd ‘(1st𝑘))‘𝑛)} → ((2nd ‘(1st𝑧))‘𝑛) = ((2nd ‘(1st𝑘))‘𝑛))
188185, 187syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧))‘𝑛) = ((2nd ‘(1st𝑘))‘𝑛))
18926, 40, 188eqfnfvd 7032 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘)))
190 xpopth 8012 . . . . . . . 8 (((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑘)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘))) ↔ (1st𝑧) = (1st𝑘)))
19116, 30, 190syl2an 596 . . . . . . 7 ((𝑧𝑆𝑘𝑆) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑘)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘))) ↔ (1st𝑧) = (1st𝑘)))
192191ad2antlr 725 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑘)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘))) ↔ (1st𝑧) = (1st𝑘)))
19312, 189, 192mpbi2and 710 . . . . 5 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (1st𝑧) = (1st𝑘))
194 eqtr3 2758 . . . . . 6 (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → (2nd𝑧) = (2nd𝑘))
195194adantl 482 . . . . 5 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd𝑧) = (2nd𝑘))
196 xpopth 8012 . . . . . . 7 ((𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st𝑧) = (1st𝑘) ∧ (2nd𝑧) = (2nd𝑘)) ↔ 𝑧 = 𝑘))
19714, 28, 196syl2an 596 . . . . . 6 ((𝑧𝑆𝑘𝑆) → (((1st𝑧) = (1st𝑘) ∧ (2nd𝑧) = (2nd𝑘)) ↔ 𝑧 = 𝑘))
198197ad2antlr 725 . . . . 5 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (((1st𝑧) = (1st𝑘) ∧ (2nd𝑧) = (2nd𝑘)) ↔ 𝑧 = 𝑘))
199193, 195, 198mpbi2and 710 . . . 4 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑧 = 𝑘)
200199ex 413 . . 3 ((𝜑 ∧ (𝑧𝑆𝑘𝑆)) → (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → 𝑧 = 𝑘))
201200ralrimivva 3200 . 2 (𝜑 → ∀𝑧𝑆𝑘𝑆 (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → 𝑧 = 𝑘))
202 fveqeq2 6897 . . 3 (𝑧 = 𝑘 → ((2nd𝑧) = 0 ↔ (2nd𝑘) = 0))
203202rmo4 3725 . 2 (∃*𝑧𝑆 (2nd𝑧) = 0 ↔ ∀𝑧𝑆𝑘𝑆 (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → 𝑧 = 𝑘))
204201, 203sylibr 233 1 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2709  wne 2940  wral 3061  ∃*wrmo 3375  {crab 3432  csb 3892  cdif 3944  cun 3945  cin 3946  c0 4321  ifcif 4527  {csn 4627   class class class wbr 5147  cmpt 5230   × cxp 5673  ccnv 5674  cima 5678  Fun wfun 6534   Fn wfn 6535  wf 6536  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  f cof 7664  1st c1st 7969  2nd c2nd 7970  m cmap 8816  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cmin 11440  cn 12208  0cn0 12468  cz 12554  cuz 12818  ...cfz 13480  ..^cfzo 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624
This theorem is referenced by:  poimirlem18  36494  poimirlem21  36497
  Copyright terms: Public domain W3C validator