Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem13 Structured version   Visualization version   GIF version

Theorem poimirlem13 34907
Description: Lemma for poimir 34927- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
Assertion
Ref Expression
poimirlem13 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦,𝑧   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝜑,𝑧   𝑓,𝐹,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑆,𝑗,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem13
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
21ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑁 ∈ ℕ)
3 poimirlem22.s . . . . . . . 8 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
4 poimirlem22.1 . . . . . . . . 9 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
54ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
6 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑧𝑆)
7 simprl 769 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd𝑧) = 0)
82, 3, 5, 6, 7poimirlem10 34904 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st𝑧)))
9 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑘𝑆)
10 simprr 771 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd𝑘) = 0)
112, 3, 5, 9, 10poimirlem10 34904 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st𝑘)))
128, 11eqtr3d 2860 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (1st ‘(1st𝑧)) = (1st ‘(1st𝑘)))
13 elrabi 3677 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
1413, 3eleq2s 2933 . . . . . . . . . . . . 13 (𝑧𝑆𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
15 xp1st 7723 . . . . . . . . . . . . 13 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1614, 15syl 17 . . . . . . . . . . . 12 (𝑧𝑆 → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
17 xp2nd 7724 . . . . . . . . . . . 12 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
1816, 17syl 17 . . . . . . . . . . 11 (𝑧𝑆 → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
19 fvex 6685 . . . . . . . . . . . 12 (2nd ‘(1st𝑧)) ∈ V
20 f1oeq1 6606 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑧)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)))
2119, 20elab 3669 . . . . . . . . . . 11 ((2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
2218, 21sylib 220 . . . . . . . . . 10 (𝑧𝑆 → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
23 f1ofn 6618 . . . . . . . . . 10 ((2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑧)) Fn (1...𝑁))
2422, 23syl 17 . . . . . . . . 9 (𝑧𝑆 → (2nd ‘(1st𝑧)) Fn (1...𝑁))
2524adantr 483 . . . . . . . 8 ((𝑧𝑆𝑘𝑆) → (2nd ‘(1st𝑧)) Fn (1...𝑁))
2625ad2antlr 725 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd ‘(1st𝑧)) Fn (1...𝑁))
27 elrabi 3677 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2827, 3eleq2s 2933 . . . . . . . . . . . . 13 (𝑘𝑆𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
29 xp1st 7723 . . . . . . . . . . . . 13 (𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
3028, 29syl 17 . . . . . . . . . . . 12 (𝑘𝑆 → (1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
31 xp2nd 7724 . . . . . . . . . . . 12 ((1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
3230, 31syl 17 . . . . . . . . . . 11 (𝑘𝑆 → (2nd ‘(1st𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
33 fvex 6685 . . . . . . . . . . . 12 (2nd ‘(1st𝑘)) ∈ V
34 f1oeq1 6606 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑘)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁)))
3533, 34elab 3669 . . . . . . . . . . 11 ((2nd ‘(1st𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁))
3632, 35sylib 220 . . . . . . . . . 10 (𝑘𝑆 → (2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁))
37 f1ofn 6618 . . . . . . . . . 10 ((2nd ‘(1st𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑘)) Fn (1...𝑁))
3836, 37syl 17 . . . . . . . . 9 (𝑘𝑆 → (2nd ‘(1st𝑘)) Fn (1...𝑁))
3938adantl 484 . . . . . . . 8 ((𝑧𝑆𝑘𝑆) → (2nd ‘(1st𝑘)) Fn (1...𝑁))
4039ad2antlr 725 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd ‘(1st𝑘)) Fn (1...𝑁))
41 eleq1 2902 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑁) ↔ 𝑛 ∈ (1...𝑁)))
4241anbi2d 630 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) ↔ (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁))))
43 oveq2 7166 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
4443imaeq2d 5931 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑧)) “ (1...𝑛)))
4543imaeq2d 5931 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((2nd ‘(1st𝑘)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))
4644, 45eqeq12d 2839 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚)) ↔ ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛))))
4742, 46imbi12d 347 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚))) ↔ ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))))
481ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
494ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
50 simpl 485 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑘𝑆) → 𝑧𝑆)
5150ad3antlr 729 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑧𝑆)
52 simplrl 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → (2nd𝑧) = 0)
53 simpr 487 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑘𝑆) → 𝑘𝑆)
5453ad3antlr 729 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑘𝑆)
55 simplrr 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → (2nd𝑘) = 0)
56 simpr 487 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ (1...𝑁))
5748, 3, 49, 51, 52, 54, 55, 56poimirlem11 34905 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) ⊆ ((2nd ‘(1st𝑘)) “ (1...𝑚)))
5848, 3, 49, 54, 55, 51, 52, 56poimirlem11 34905 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑘)) “ (1...𝑚)) ⊆ ((2nd ‘(1st𝑧)) “ (1...𝑚)))
5957, 58eqssd 3986 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚)))
6047, 59chvarvv 2005 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))
61 simpll 765 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝜑)
62 elfznn 12939 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
63 nnm1nn0 11941 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
6462, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ ℕ0)
6564adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1) → (𝑛 − 1) ∈ ℕ0)
6662nncnd 11656 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
67 ax-1cn 10597 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
68 subeq0 10914 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) = 0 ↔ 𝑛 = 1))
6966, 67, 68sylancl 588 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = 0 ↔ 𝑛 = 1))
7069necon3abid 3054 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) ≠ 0 ↔ ¬ 𝑛 = 1))
7170biimpar 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1) → (𝑛 − 1) ≠ 0)
72 elnnne0 11914 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℕ ↔ ((𝑛 − 1) ∈ ℕ0 ∧ (𝑛 − 1) ≠ 0))
7365, 71, 72sylanbrc 585 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1) → (𝑛 − 1) ∈ ℕ)
7473adantl 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ∈ ℕ)
7564nn0red 11959 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ ℝ)
7675adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ∈ ℝ)
7762nnred 11655 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℝ)
7877adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
791nnred 11655 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℝ)
8079adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
8177lem1d 11575 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ≤ 𝑛)
8281adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ≤ 𝑛)
83 elfzle2 12914 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛𝑁)
8483adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛𝑁)
8576, 78, 80, 82, 84letrd 10799 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ≤ 𝑁)
8685adantrr 715 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ≤ 𝑁)
871nnzd 12089 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℤ)
88 fznn 12978 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → ((𝑛 − 1) ∈ (1...𝑁) ↔ ((𝑛 − 1) ∈ ℕ ∧ (𝑛 − 1) ≤ 𝑁)))
8987, 88syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑛 − 1) ∈ (1...𝑁) ↔ ((𝑛 − 1) ∈ ℕ ∧ (𝑛 − 1) ≤ 𝑁)))
9089adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → ((𝑛 − 1) ∈ (1...𝑁) ↔ ((𝑛 − 1) ∈ ℕ ∧ (𝑛 − 1) ≤ 𝑁)))
9174, 86, 90mpbir2and 711 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ∈ (1...𝑁))
9261, 91sylan 582 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → (𝑛 − 1) ∈ (1...𝑁))
93 ovex 7191 . . . . . . . . . . . . . 14 (𝑛 − 1) ∈ V
94 eleq1 2902 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → (𝑚 ∈ (1...𝑁) ↔ (𝑛 − 1) ∈ (1...𝑁)))
9594anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) ↔ (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 − 1) ∈ (1...𝑁))))
96 oveq2 7166 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (1...𝑚) = (1...(𝑛 − 1)))
9796imaeq2d 5931 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))))
9896imaeq2d 5931 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((2nd ‘(1st𝑘)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
9997, 98eqeq12d 2839 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → (((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚)) ↔ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
10095, 99imbi12d 347 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 − 1) → (((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑚 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...𝑚)) = ((2nd ‘(1st𝑘)) “ (1...𝑚))) ↔ ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 − 1) ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))))
10193, 100, 59vtocl 3561 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 − 1) ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
10292, 101syldan 593 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = 1)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
103102expr 459 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (¬ 𝑛 = 1 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
104 ima0 5947 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑧)) “ ∅) = ∅
105 ima0 5947 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑘)) “ ∅) = ∅
106104, 105eqtr4i 2849 . . . . . . . . . . . 12 ((2nd ‘(1st𝑧)) “ ∅) = ((2nd ‘(1st𝑘)) “ ∅)
107 oveq1 7165 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
108 1m1e0 11712 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
109107, 108syl6eq 2874 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 − 1) = 0)
110109oveq2d 7174 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1...(𝑛 − 1)) = (1...0))
111 fz10 12931 . . . . . . . . . . . . . 14 (1...0) = ∅
112110, 111syl6eq 2874 . . . . . . . . . . . . 13 (𝑛 = 1 → (1...(𝑛 − 1)) = ∅)
113112imaeq2d 5931 . . . . . . . . . . . 12 (𝑛 = 1 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑧)) “ ∅))
114112imaeq2d 5931 . . . . . . . . . . . 12 (𝑛 = 1 → ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ ∅))
115106, 113, 1143eqtr4a 2884 . . . . . . . . . . 11 (𝑛 = 1 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
116103, 115pm2.61d2 183 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
11760, 116difeq12d 4102 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
118 fnsnfv 6745 . . . . . . . . . . . 12 (((2nd ‘(1st𝑧)) Fn (1...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = ((2nd ‘(1st𝑧)) “ {𝑛}))
11924, 118sylan 582 . . . . . . . . . . 11 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = ((2nd ‘(1st𝑧)) “ {𝑛}))
12062adantl 484 . . . . . . . . . . . . 13 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
121 uncom 4131 . . . . . . . . . . . . . . . 16 ((1...(𝑛 − 1)) ∪ {𝑛}) = ({𝑛} ∪ (1...(𝑛 − 1)))
122121difeq1i 4097 . . . . . . . . . . . . . . 15 (((1...(𝑛 − 1)) ∪ {𝑛}) ∖ (1...(𝑛 − 1))) = (({𝑛} ∪ (1...(𝑛 − 1))) ∖ (1...(𝑛 − 1)))
123 difun2 4431 . . . . . . . . . . . . . . 15 (({𝑛} ∪ (1...(𝑛 − 1))) ∖ (1...(𝑛 − 1))) = ({𝑛} ∖ (1...(𝑛 − 1)))
124122, 123eqtri 2846 . . . . . . . . . . . . . 14 (((1...(𝑛 − 1)) ∪ {𝑛}) ∖ (1...(𝑛 − 1))) = ({𝑛} ∖ (1...(𝑛 − 1)))
125 nncn 11648 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
126 npcan1 11067 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
127125, 126syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛 − 1) + 1) = 𝑛)
128 elnnuz 12285 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
129128biimpi 218 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
130127, 129eqeltrd 2915 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝑛 − 1) + 1) ∈ (ℤ‘1))
13163nn0zd 12088 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℤ)
132 uzid 12261 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) ∈ ℤ → (𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)))
133131, 132syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)))
134 peano2uz 12304 . . . . . . . . . . . . . . . . . . 19 ((𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)) → ((𝑛 − 1) + 1) ∈ (ℤ‘(𝑛 − 1)))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛 − 1) + 1) ∈ (ℤ‘(𝑛 − 1)))
136127, 135eqeltrrd 2916 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘(𝑛 − 1)))
137 fzsplit2 12935 . . . . . . . . . . . . . . . . 17 ((((𝑛 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ‘(𝑛 − 1))) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)))
138130, 136, 137syl2anc 586 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)))
139127oveq1d 7173 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝑛 − 1) + 1)...𝑛) = (𝑛...𝑛))
140 nnz 12007 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
141 fzsn 12952 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ → (𝑛...𝑛) = {𝑛})
142140, 141syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛...𝑛) = {𝑛})
143139, 142eqtrd 2858 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛 − 1) + 1)...𝑛) = {𝑛})
144143uneq2d 4141 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)) = ((1...(𝑛 − 1)) ∪ {𝑛}))
145138, 144eqtrd 2858 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1...𝑛) = ((1...(𝑛 − 1)) ∪ {𝑛}))
146145difeq1d 4100 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((1...𝑛) ∖ (1...(𝑛 − 1))) = (((1...(𝑛 − 1)) ∪ {𝑛}) ∖ (1...(𝑛 − 1))))
147 nnre 11647 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
148 ltm1 11484 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → (𝑛 − 1) < 𝑛)
149 peano2rem 10955 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
150 ltnle 10722 . . . . . . . . . . . . . . . . . . 19 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1)))
151149, 150mpancom 686 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → ((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1)))
152148, 151mpbid 234 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → ¬ 𝑛 ≤ (𝑛 − 1))
153 elfzle2 12914 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑛 − 1)) → 𝑛 ≤ (𝑛 − 1))
154152, 153nsyl 142 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ → ¬ 𝑛 ∈ (1...(𝑛 − 1)))
155147, 154syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ¬ 𝑛 ∈ (1...(𝑛 − 1)))
156 incom 4180 . . . . . . . . . . . . . . . . 17 ((1...(𝑛 − 1)) ∩ {𝑛}) = ({𝑛} ∩ (1...(𝑛 − 1)))
157156eqeq1i 2828 . . . . . . . . . . . . . . . 16 (((1...(𝑛 − 1)) ∩ {𝑛}) = ∅ ↔ ({𝑛} ∩ (1...(𝑛 − 1))) = ∅)
158 disjsn 4649 . . . . . . . . . . . . . . . 16 (((1...(𝑛 − 1)) ∩ {𝑛}) = ∅ ↔ ¬ 𝑛 ∈ (1...(𝑛 − 1)))
159 disj3 4405 . . . . . . . . . . . . . . . 16 (({𝑛} ∩ (1...(𝑛 − 1))) = ∅ ↔ {𝑛} = ({𝑛} ∖ (1...(𝑛 − 1))))
160157, 158, 1593bitr3i 303 . . . . . . . . . . . . . . 15 𝑛 ∈ (1...(𝑛 − 1)) ↔ {𝑛} = ({𝑛} ∖ (1...(𝑛 − 1))))
161155, 160sylib 220 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → {𝑛} = ({𝑛} ∖ (1...(𝑛 − 1))))
162124, 146, 1613eqtr4a 2884 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((1...𝑛) ∖ (1...(𝑛 − 1))) = {𝑛})
163120, 162syl 17 . . . . . . . . . . . 12 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((1...𝑛) ∖ (1...(𝑛 − 1))) = {𝑛})
164163imaeq2d 5931 . . . . . . . . . . 11 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = ((2nd ‘(1st𝑧)) “ {𝑛}))
165 dff1o3 6623 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑧)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑧))))
166165simprbi 499 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑧)))
16722, 166syl 17 . . . . . . . . . . . . 13 (𝑧𝑆 → Fun (2nd ‘(1st𝑧)))
168 imadif 6440 . . . . . . . . . . . . 13 (Fun (2nd ‘(1st𝑧)) → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
169167, 168syl 17 . . . . . . . . . . . 12 (𝑧𝑆 → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
170169adantr 483 . . . . . . . . . . 11 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧)) “ ((1...𝑛) ∖ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
171119, 164, 1703eqtr2d 2864 . . . . . . . . . 10 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
1726, 171sylan 582 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))))
173 eleq1 2902 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (𝑧𝑆𝑘𝑆))
174173anbi1d 631 . . . . . . . . . . . 12 (𝑧 = 𝑘 → ((𝑧𝑆𝑛 ∈ (1...𝑁)) ↔ (𝑘𝑆𝑛 ∈ (1...𝑁))))
175 2fveq3 6677 . . . . . . . . . . . . . . 15 (𝑧 = 𝑘 → (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘)))
176175fveq1d 6674 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((2nd ‘(1st𝑧))‘𝑛) = ((2nd ‘(1st𝑘))‘𝑛))
177176sneqd 4581 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → {((2nd ‘(1st𝑧))‘𝑛)} = {((2nd ‘(1st𝑘))‘𝑛)})
178175imaeq1d 5930 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((2nd ‘(1st𝑧)) “ (1...𝑛)) = ((2nd ‘(1st𝑘)) “ (1...𝑛)))
179175imaeq1d 5930 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))) = ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))
180178, 179difeq12d 4102 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))) = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
181177, 180eqeq12d 2839 . . . . . . . . . . . 12 (𝑧 = 𝑘 → ({((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1)))) ↔ {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1))))))
182174, 181imbi12d 347 . . . . . . . . . . 11 (𝑧 = 𝑘 → (((𝑧𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = (((2nd ‘(1st𝑧)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑧)) “ (1...(𝑛 − 1))))) ↔ ((𝑘𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))))
183182, 171chvarvv 2005 . . . . . . . . . 10 ((𝑘𝑆𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
1849, 183sylan 582 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑘))‘𝑛)} = (((2nd ‘(1st𝑘)) “ (1...𝑛)) ∖ ((2nd ‘(1st𝑘)) “ (1...(𝑛 − 1)))))
185117, 172, 1843eqtr4d 2868 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → {((2nd ‘(1st𝑧))‘𝑛)} = {((2nd ‘(1st𝑘))‘𝑛)})
186 fvex 6685 . . . . . . . . 9 ((2nd ‘(1st𝑧))‘𝑛) ∈ V
187186sneqr 4773 . . . . . . . 8 ({((2nd ‘(1st𝑧))‘𝑛)} = {((2nd ‘(1st𝑘))‘𝑛)} → ((2nd ‘(1st𝑧))‘𝑛) = ((2nd ‘(1st𝑘))‘𝑛))
188185, 187syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → ((2nd ‘(1st𝑧))‘𝑛) = ((2nd ‘(1st𝑘))‘𝑛))
18926, 40, 188eqfnfvd 6807 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘)))
190 xpopth 7732 . . . . . . . 8 (((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (1st𝑘) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑘)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘))) ↔ (1st𝑧) = (1st𝑘)))
19116, 30, 190syl2an 597 . . . . . . 7 ((𝑧𝑆𝑘𝑆) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑘)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘))) ↔ (1st𝑧) = (1st𝑘)))
192191ad2antlr 725 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑘)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑘))) ↔ (1st𝑧) = (1st𝑘)))
19312, 189, 192mpbi2and 710 . . . . 5 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (1st𝑧) = (1st𝑘))
194 eqtr3 2845 . . . . . 6 (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → (2nd𝑧) = (2nd𝑘))
195194adantl 484 . . . . 5 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (2nd𝑧) = (2nd𝑘))
196 xpopth 7732 . . . . . . 7 ((𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑘 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st𝑧) = (1st𝑘) ∧ (2nd𝑧) = (2nd𝑘)) ↔ 𝑧 = 𝑘))
19714, 28, 196syl2an 597 . . . . . 6 ((𝑧𝑆𝑘𝑆) → (((1st𝑧) = (1st𝑘) ∧ (2nd𝑧) = (2nd𝑘)) ↔ 𝑧 = 𝑘))
198197ad2antlr 725 . . . . 5 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → (((1st𝑧) = (1st𝑘) ∧ (2nd𝑧) = (2nd𝑘)) ↔ 𝑧 = 𝑘))
199193, 195, 198mpbi2and 710 . . . 4 (((𝜑 ∧ (𝑧𝑆𝑘𝑆)) ∧ ((2nd𝑧) = 0 ∧ (2nd𝑘) = 0)) → 𝑧 = 𝑘)
200199ex 415 . . 3 ((𝜑 ∧ (𝑧𝑆𝑘𝑆)) → (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → 𝑧 = 𝑘))
201200ralrimivva 3193 . 2 (𝜑 → ∀𝑧𝑆𝑘𝑆 (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → 𝑧 = 𝑘))
202 fveqeq2 6681 . . 3 (𝑧 = 𝑘 → ((2nd𝑧) = 0 ↔ (2nd𝑘) = 0))
203202rmo4 3723 . 2 (∃*𝑧𝑆 (2nd𝑧) = 0 ↔ ∀𝑧𝑆𝑘𝑆 (((2nd𝑧) = 0 ∧ (2nd𝑘) = 0) → 𝑧 = 𝑘))
204201, 203sylibr 236 1 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  ∃*wrmo 3143  {crab 3144  csb 3885  cdif 3935  cun 3936  cin 3937  c0 4293  ifcif 4469  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  ccnv 5556  cima 5560  Fun wfun 6351   Fn wfn 6352  wf 6353  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  f cof 7409  1st c1st 7689  2nd c2nd 7690  m cmap 8408  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  cn 11640  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037
This theorem is referenced by:  poimirlem18  34912  poimirlem21  34915
  Copyright terms: Public domain W3C validator