| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version | ||
| Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7307. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| canth2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | pwex 5322 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
| 3 | snelpwi 5390 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 4 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | 4 | sneqr 4794 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
| 6 | sneq 4589 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 7 | 5, 6 | impbii 209 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
| 9 | 3, 8 | dom3 8928 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
| 10 | 1, 2, 9 | mp2an 692 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
| 11 | 1 | canth 7307 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
| 12 | f1ofo 6775 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
| 13 | 11, 12 | mto 197 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 14 | 13 | nex 1800 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 15 | bren 8889 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
| 16 | 14, 15 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
| 17 | brsdom 8907 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
| 18 | 10, 16, 17 | mpbir2an 711 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 𝒫 cpw 4553 {csn 4579 class class class wbr 5095 –onto→wfo 6484 –1-1-onto→wf1o 6485 ≈ cen 8876 ≼ cdom 8877 ≺ csdm 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-en 8880 df-dom 8881 df-sdom 8882 |
| This theorem is referenced by: canth2g 9055 r1sdom 9689 alephsucpw2 10024 dfac13 10056 pwsdompw 10116 numthcor 10407 alephexp1 10492 pwcfsdom 10496 cfpwsdom 10497 gchac 10594 inawinalem 10602 tskcard 10694 gruina 10731 grothac 10743 rpnnen 16154 rexpen 16155 rucALT 16157 rectbntr0 24737 |
| Copyright terms: Public domain | W3C validator |