| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version | ||
| Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7300. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| canth2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | pwex 5318 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
| 3 | snelpwi 5385 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 4 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | 4 | sneqr 4792 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
| 6 | sneq 4586 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 7 | 5, 6 | impbii 209 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
| 9 | 3, 8 | dom3 8918 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
| 10 | 1, 2, 9 | mp2an 692 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
| 11 | 1 | canth 7300 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
| 12 | f1ofo 6770 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
| 13 | 11, 12 | mto 197 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 14 | 13 | nex 1801 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 15 | bren 8879 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
| 16 | 14, 15 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
| 17 | brsdom 8897 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
| 18 | 10, 16, 17 | mpbir2an 711 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4550 {csn 4576 class class class wbr 5091 –onto→wfo 6479 –1-1-onto→wf1o 6480 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: canth2g 9044 r1sdom 9667 alephsucpw2 10002 dfac13 10034 pwsdompw 10094 numthcor 10385 alephexp1 10470 pwcfsdom 10474 cfpwsdom 10475 gchac 10572 inawinalem 10580 tskcard 10672 gruina 10709 grothac 10721 rpnnen 16136 rexpen 16137 rucALT 16139 rectbntr0 24749 |
| Copyright terms: Public domain | W3C validator |