MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2 Structured version   Visualization version   GIF version

Theorem canth2 8403
Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 6882. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.)
Hypothesis
Ref Expression
canth2.1 𝐴 ∈ V
Assertion
Ref Expression
canth2 𝐴 ≺ 𝒫 𝐴

Proof of Theorem canth2
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth2.1 . . 3 𝐴 ∈ V
21pwex 5094 . . 3 𝒫 𝐴 ∈ V
3 snelpwi 5146 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 vex 3401 . . . . . . 7 𝑥 ∈ V
54sneqr 4602 . . . . . 6 ({𝑥} = {𝑦} → 𝑥 = 𝑦)
6 sneq 4408 . . . . . 6 (𝑥 = 𝑦 → {𝑥} = {𝑦})
75, 6impbii 201 . . . . 5 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
87a1i 11 . . . 4 ((𝑥𝐴𝑦𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
93, 8dom3 8287 . . 3 ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴)
101, 2, 9mp2an 682 . 2 𝐴 ≼ 𝒫 𝐴
111canth 6882 . . . . 5 ¬ 𝑓:𝐴onto→𝒫 𝐴
12 f1ofo 6400 . . . . 5 (𝑓:𝐴1-1-onto→𝒫 𝐴𝑓:𝐴onto→𝒫 𝐴)
1311, 12mto 189 . . . 4 ¬ 𝑓:𝐴1-1-onto→𝒫 𝐴
1413nex 1844 . . 3 ¬ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴
15 bren 8252 . . 3 (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴)
1614, 15mtbir 315 . 2 ¬ 𝐴 ≈ 𝒫 𝐴
17 brsdom 8266 . 2 (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴))
1810, 16, 17mpbir2an 701 1 𝐴 ≺ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wa 386   = wceq 1601  wex 1823  wcel 2107  Vcvv 3398  𝒫 cpw 4379  {csn 4398   class class class wbr 4888  ontowfo 6135  1-1-ontowf1o 6136  cen 8240  cdom 8241  csdm 8242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-en 8244  df-dom 8245  df-sdom 8246
This theorem is referenced by:  canth2g  8404  r1sdom  8936  alephsucpw2  9269  dfac13  9301  pwsdompw  9363  numthcor  9653  alephexp1  9738  pwcfsdom  9742  cfpwsdom  9743  gchhar  9838  gchac  9840  inawinalem  9848  tskcard  9940  gruina  9977  grothac  9989  rpnnen  15369  rexpen  15370  rucALT  15372  rectbntr0  23054
  Copyright terms: Public domain W3C validator