MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2 Structured version   Visualization version   GIF version

Theorem canth2 9054
Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7307. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.)
Hypothesis
Ref Expression
canth2.1 𝐴 ∈ V
Assertion
Ref Expression
canth2 𝐴 ≺ 𝒫 𝐴

Proof of Theorem canth2
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth2.1 . . 3 𝐴 ∈ V
21pwex 5322 . . 3 𝒫 𝐴 ∈ V
3 snelpwi 5390 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 vex 3442 . . . . . . 7 𝑥 ∈ V
54sneqr 4794 . . . . . 6 ({𝑥} = {𝑦} → 𝑥 = 𝑦)
6 sneq 4589 . . . . . 6 (𝑥 = 𝑦 → {𝑥} = {𝑦})
75, 6impbii 209 . . . . 5 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
87a1i 11 . . . 4 ((𝑥𝐴𝑦𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
93, 8dom3 8928 . . 3 ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴)
101, 2, 9mp2an 692 . 2 𝐴 ≼ 𝒫 𝐴
111canth 7307 . . . . 5 ¬ 𝑓:𝐴onto→𝒫 𝐴
12 f1ofo 6775 . . . . 5 (𝑓:𝐴1-1-onto→𝒫 𝐴𝑓:𝐴onto→𝒫 𝐴)
1311, 12mto 197 . . . 4 ¬ 𝑓:𝐴1-1-onto→𝒫 𝐴
1413nex 1800 . . 3 ¬ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴
15 bren 8889 . . 3 (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴)
1614, 15mtbir 323 . 2 ¬ 𝐴 ≈ 𝒫 𝐴
17 brsdom 8907 . 2 (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴))
1810, 16, 17mpbir2an 711 1 𝐴 ≺ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  ontowfo 6484  1-1-ontowf1o 6485  cen 8876  cdom 8877  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  canth2g  9055  r1sdom  9689  alephsucpw2  10024  dfac13  10056  pwsdompw  10116  numthcor  10407  alephexp1  10492  pwcfsdom  10496  cfpwsdom  10497  gchac  10594  inawinalem  10602  tskcard  10694  gruina  10731  grothac  10743  rpnnen  16154  rexpen  16155  rucALT  16157  rectbntr0  24737
  Copyright terms: Public domain W3C validator