MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2 Structured version   Visualization version   GIF version

Theorem canth2 8866
Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7209. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.)
Hypothesis
Ref Expression
canth2.1 𝐴 ∈ V
Assertion
Ref Expression
canth2 𝐴 ≺ 𝒫 𝐴

Proof of Theorem canth2
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth2.1 . . 3 𝐴 ∈ V
21pwex 5298 . . 3 𝒫 𝐴 ∈ V
3 snelpwi 5354 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 vex 3426 . . . . . . 7 𝑥 ∈ V
54sneqr 4768 . . . . . 6 ({𝑥} = {𝑦} → 𝑥 = 𝑦)
6 sneq 4568 . . . . . 6 (𝑥 = 𝑦 → {𝑥} = {𝑦})
75, 6impbii 208 . . . . 5 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
87a1i 11 . . . 4 ((𝑥𝐴𝑦𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
93, 8dom3 8739 . . 3 ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴)
101, 2, 9mp2an 688 . 2 𝐴 ≼ 𝒫 𝐴
111canth 7209 . . . . 5 ¬ 𝑓:𝐴onto→𝒫 𝐴
12 f1ofo 6707 . . . . 5 (𝑓:𝐴1-1-onto→𝒫 𝐴𝑓:𝐴onto→𝒫 𝐴)
1311, 12mto 196 . . . 4 ¬ 𝑓:𝐴1-1-onto→𝒫 𝐴
1413nex 1804 . . 3 ¬ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴
15 bren 8701 . . 3 (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴)
1614, 15mtbir 322 . 2 ¬ 𝐴 ≈ 𝒫 𝐴
17 brsdom 8718 . 2 (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴))
1810, 16, 17mpbir2an 707 1 𝐴 ≺ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  ontowfo 6416  1-1-ontowf1o 6417  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  canth2g  8867  r1sdom  9463  alephsucpw2  9798  dfac13  9829  pwsdompw  9891  numthcor  10181  alephexp1  10266  pwcfsdom  10270  cfpwsdom  10271  gchac  10368  inawinalem  10376  tskcard  10468  gruina  10505  grothac  10517  rpnnen  15864  rexpen  15865  rucALT  15867  rectbntr0  23901
  Copyright terms: Public domain W3C validator