![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version |
Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7401. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
canth2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | pwex 5398 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
3 | snelpwi 5463 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | 4 | sneqr 4865 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
6 | sneq 4658 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
7 | 5, 6 | impbii 209 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
9 | 3, 8 | dom3 9056 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
10 | 1, 2, 9 | mp2an 691 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
11 | 1 | canth 7401 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
12 | f1ofo 6869 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
13 | 11, 12 | mto 197 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
14 | 13 | nex 1798 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
15 | bren 9013 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
16 | 14, 15 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
17 | brsdom 9035 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
18 | 10, 16, 17 | mpbir2an 710 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 –onto→wfo 6571 –1-1-onto→wf1o 6572 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: canth2g 9197 r1sdom 9843 alephsucpw2 10180 dfac13 10212 pwsdompw 10272 numthcor 10563 alephexp1 10648 pwcfsdom 10652 cfpwsdom 10653 gchac 10750 inawinalem 10758 tskcard 10850 gruina 10887 grothac 10899 rpnnen 16275 rexpen 16276 rucALT 16278 rectbntr0 24873 |
Copyright terms: Public domain | W3C validator |