| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version | ||
| Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7306. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| canth2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | pwex 5320 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
| 3 | snelpwi 5387 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 4 | vex 3441 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | 4 | sneqr 4791 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
| 6 | sneq 4585 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 7 | 5, 6 | impbii 209 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
| 9 | 3, 8 | dom3 8925 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
| 10 | 1, 2, 9 | mp2an 692 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
| 11 | 1 | canth 7306 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
| 12 | f1ofo 6775 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
| 13 | 11, 12 | mto 197 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 14 | 13 | nex 1801 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 15 | bren 8885 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
| 16 | 14, 15 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
| 17 | brsdom 8903 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
| 18 | 10, 16, 17 | mpbir2an 711 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 𝒫 cpw 4549 {csn 4575 class class class wbr 5093 –onto→wfo 6484 –1-1-onto→wf1o 6485 ≈ cen 8872 ≼ cdom 8873 ≺ csdm 8874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-en 8876 df-dom 8877 df-sdom 8878 |
| This theorem is referenced by: canth2g 9051 r1sdom 9674 alephsucpw2 10009 dfac13 10041 pwsdompw 10101 numthcor 10392 alephexp1 10477 pwcfsdom 10481 cfpwsdom 10482 gchac 10579 inawinalem 10587 tskcard 10679 gruina 10716 grothac 10728 rpnnen 16138 rexpen 16139 rucALT 16141 rectbntr0 24749 |
| Copyright terms: Public domain | W3C validator |