![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version |
Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 6882. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
canth2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | pwex 5094 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
3 | snelpwi 5146 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
4 | vex 3401 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | 4 | sneqr 4602 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
6 | sneq 4408 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
7 | 5, 6 | impbii 201 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
9 | 3, 8 | dom3 8287 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
10 | 1, 2, 9 | mp2an 682 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
11 | 1 | canth 6882 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
12 | f1ofo 6400 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
13 | 11, 12 | mto 189 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
14 | 13 | nex 1844 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
15 | bren 8252 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
16 | 14, 15 | mtbir 315 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
17 | brsdom 8266 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
18 | 10, 16, 17 | mpbir2an 701 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 386 = wceq 1601 ∃wex 1823 ∈ wcel 2107 Vcvv 3398 𝒫 cpw 4379 {csn 4398 class class class wbr 4888 –onto→wfo 6135 –1-1-onto→wf1o 6136 ≈ cen 8240 ≼ cdom 8241 ≺ csdm 8242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-en 8244 df-dom 8245 df-sdom 8246 |
This theorem is referenced by: canth2g 8404 r1sdom 8936 alephsucpw2 9269 dfac13 9301 pwsdompw 9363 numthcor 9653 alephexp1 9738 pwcfsdom 9742 cfpwsdom 9743 gchhar 9838 gchac 9840 inawinalem 9848 tskcard 9940 gruina 9977 grothac 9989 rpnnen 15369 rexpen 15370 rucALT 15372 rectbntr0 23054 |
Copyright terms: Public domain | W3C validator |