| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version | ||
| Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7344. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| canth2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | pwex 5338 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
| 3 | snelpwi 5406 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 4 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | 4 | sneqr 4807 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
| 6 | sneq 4602 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 7 | 5, 6 | impbii 209 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
| 9 | 3, 8 | dom3 8970 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
| 10 | 1, 2, 9 | mp2an 692 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
| 11 | 1 | canth 7344 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
| 12 | f1ofo 6810 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
| 13 | 11, 12 | mto 197 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 14 | 13 | nex 1800 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 15 | bren 8931 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
| 16 | 14, 15 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
| 17 | brsdom 8949 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
| 18 | 10, 16, 17 | mpbir2an 711 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 –onto→wfo 6512 –1-1-onto→wf1o 6513 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: canth2g 9101 r1sdom 9734 alephsucpw2 10071 dfac13 10103 pwsdompw 10163 numthcor 10454 alephexp1 10539 pwcfsdom 10543 cfpwsdom 10544 gchac 10641 inawinalem 10649 tskcard 10741 gruina 10778 grothac 10790 rpnnen 16202 rexpen 16203 rucALT 16205 rectbntr0 24728 |
| Copyright terms: Public domain | W3C validator |