![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdim1 | Structured version Visualization version GIF version |
Description: The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 28993. (Contributed by Scott Fenton, 22-Apr-2013.) |
Ref | Expression |
---|---|
axlowdim1 | ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11290 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | 1 | fconst6 6811 | . . 3 ⊢ ((1...𝑁) × {1}):(1...𝑁)⟶ℝ |
3 | elee 28927 | . . 3 ⊢ (𝑁 ∈ ℕ → (((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {1}):(1...𝑁)⟶ℝ)) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ∈ (𝔼‘𝑁)) |
5 | 0re 11292 | . . . 4 ⊢ 0 ∈ ℝ | |
6 | 5 | fconst6 6811 | . . 3 ⊢ ((1...𝑁) × {0}):(1...𝑁)⟶ℝ |
7 | elee 28927 | . . 3 ⊢ (𝑁 ∈ ℕ → (((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {0}):(1...𝑁)⟶ℝ)) | |
8 | 6, 7 | mpbiri 258 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {0}) ∈ (𝔼‘𝑁)) |
9 | ax-1ne0 11253 | . . . . . . 7 ⊢ 1 ≠ 0 | |
10 | 9 | neii 2948 | . . . . . 6 ⊢ ¬ 1 = 0 |
11 | 1ex 11286 | . . . . . . 7 ⊢ 1 ∈ V | |
12 | 11 | sneqr 4865 | . . . . . 6 ⊢ ({1} = {0} → 1 = 0) |
13 | 10, 12 | mto 197 | . . . . 5 ⊢ ¬ {1} = {0} |
14 | elnnuz 12947 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
15 | eluzfz1 13591 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
16 | 14, 15 | sylbi 217 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ (1...𝑁)) |
17 | 16 | ne0d 4365 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅) |
18 | rnxp 6201 | . . . . . . 7 ⊢ ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {1}) = {1}) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ran ((1...𝑁) × {1}) = {1}) |
20 | rnxp 6201 | . . . . . . 7 ⊢ ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {0}) = {0}) | |
21 | 17, 20 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ran ((1...𝑁) × {0}) = {0}) |
22 | 19, 21 | eqeq12d 2756 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0}) ↔ {1} = {0})) |
23 | 13, 22 | mtbiri 327 | . . . 4 ⊢ (𝑁 ∈ ℕ → ¬ ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0})) |
24 | rneq 5961 | . . . 4 ⊢ (((1...𝑁) × {1}) = ((1...𝑁) × {0}) → ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0})) | |
25 | 23, 24 | nsyl 140 | . . 3 ⊢ (𝑁 ∈ ℕ → ¬ ((1...𝑁) × {1}) = ((1...𝑁) × {0})) |
26 | 25 | neqned 2953 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})) |
27 | neeq1 3009 | . . 3 ⊢ (𝑥 = ((1...𝑁) × {1}) → (𝑥 ≠ 𝑦 ↔ ((1...𝑁) × {1}) ≠ 𝑦)) | |
28 | neeq2 3010 | . . 3 ⊢ (𝑦 = ((1...𝑁) × {0}) → (((1...𝑁) × {1}) ≠ 𝑦 ↔ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0}))) | |
29 | 27, 28 | rspc2ev 3648 | . 2 ⊢ ((((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
30 | 4, 8, 26, 29 | syl3anc 1371 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∅c0 4352 {csn 4648 × cxp 5698 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 ℕcn 12293 ℤ≥cuz 12903 ...cfz 13567 𝔼cee 28921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-z 12640 df-uz 12904 df-fz 13568 df-ee 28924 |
This theorem is referenced by: btwndiff 35991 |
Copyright terms: Public domain | W3C validator |