MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdim1 Structured version   Visualization version   GIF version

Theorem axlowdim1 26130
Description: The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 26131. (Contributed by Scott Fenton, 22-Apr-2013.)
Assertion
Ref Expression
axlowdim1 (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥𝑦)
Distinct variable group:   𝑥,𝑁,𝑦

Proof of Theorem axlowdim1
StepHypRef Expression
1 1re 10293 . . . 4 1 ∈ ℝ
21fconst6 6277 . . 3 ((1...𝑁) × {1}):(1...𝑁)⟶ℝ
3 elee 26065 . . 3 (𝑁 ∈ ℕ → (((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {1}):(1...𝑁)⟶ℝ))
42, 3mpbiri 249 . 2 (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ∈ (𝔼‘𝑁))
5 0re 10295 . . . 4 0 ∈ ℝ
65fconst6 6277 . . 3 ((1...𝑁) × {0}):(1...𝑁)⟶ℝ
7 elee 26065 . . 3 (𝑁 ∈ ℕ → (((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {0}):(1...𝑁)⟶ℝ))
86, 7mpbiri 249 . 2 (𝑁 ∈ ℕ → ((1...𝑁) × {0}) ∈ (𝔼‘𝑁))
9 ax-1ne0 10258 . . . . . . 7 1 ≠ 0
109neii 2939 . . . . . 6 ¬ 1 = 0
11 1ex 10289 . . . . . . 7 1 ∈ V
1211sneqr 4523 . . . . . 6 ({1} = {0} → 1 = 0)
1310, 12mto 188 . . . . 5 ¬ {1} = {0}
14 elnnuz 11924 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
15 eluzfz1 12555 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
1614, 15sylbi 208 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
1716ne0d 4086 . . . . . . 7 (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅)
18 rnxp 5747 . . . . . . 7 ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {1}) = {1})
1917, 18syl 17 . . . . . 6 (𝑁 ∈ ℕ → ran ((1...𝑁) × {1}) = {1})
20 rnxp 5747 . . . . . . 7 ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {0}) = {0})
2117, 20syl 17 . . . . . 6 (𝑁 ∈ ℕ → ran ((1...𝑁) × {0}) = {0})
2219, 21eqeq12d 2780 . . . . 5 (𝑁 ∈ ℕ → (ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0}) ↔ {1} = {0}))
2313, 22mtbiri 318 . . . 4 (𝑁 ∈ ℕ → ¬ ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0}))
24 rneq 5519 . . . 4 (((1...𝑁) × {1}) = ((1...𝑁) × {0}) → ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0}))
2523, 24nsyl 137 . . 3 (𝑁 ∈ ℕ → ¬ ((1...𝑁) × {1}) = ((1...𝑁) × {0}))
2625neqned 2944 . 2 (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0}))
27 neeq1 2999 . . 3 (𝑥 = ((1...𝑁) × {1}) → (𝑥𝑦 ↔ ((1...𝑁) × {1}) ≠ 𝑦))
28 neeq2 3000 . . 3 (𝑦 = ((1...𝑁) × {0}) → (((1...𝑁) × {1}) ≠ 𝑦 ↔ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})))
2927, 28rspc2ev 3476 . 2 ((((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥𝑦)
304, 8, 26, 29syl3anc 1490 1 (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  wne 2937  wrex 3056  c0 4079  {csn 4334   × cxp 5275  ran crn 5278  wf 6064  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  1c1 10190  cn 11274  cuz 11886  ...cfz 12533  𝔼cee 26059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-z 11625  df-uz 11887  df-fz 12534  df-ee 26062
This theorem is referenced by:  btwndiff  32578
  Copyright terms: Public domain W3C validator