![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdim1 | Structured version Visualization version GIF version |
Description: The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 28207. (Contributed by Scott Fenton, 22-Apr-2013.) |
Ref | Expression |
---|---|
axlowdim1 | ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11210 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | 1 | fconst6 6778 | . . 3 ⊢ ((1...𝑁) × {1}):(1...𝑁)⟶ℝ |
3 | elee 28141 | . . 3 ⊢ (𝑁 ∈ ℕ → (((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {1}):(1...𝑁)⟶ℝ)) | |
4 | 2, 3 | mpbiri 257 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ∈ (𝔼‘𝑁)) |
5 | 0re 11212 | . . . 4 ⊢ 0 ∈ ℝ | |
6 | 5 | fconst6 6778 | . . 3 ⊢ ((1...𝑁) × {0}):(1...𝑁)⟶ℝ |
7 | elee 28141 | . . 3 ⊢ (𝑁 ∈ ℕ → (((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {0}):(1...𝑁)⟶ℝ)) | |
8 | 6, 7 | mpbiri 257 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {0}) ∈ (𝔼‘𝑁)) |
9 | ax-1ne0 11175 | . . . . . . 7 ⊢ 1 ≠ 0 | |
10 | 9 | neii 2942 | . . . . . 6 ⊢ ¬ 1 = 0 |
11 | 1ex 11206 | . . . . . . 7 ⊢ 1 ∈ V | |
12 | 11 | sneqr 4840 | . . . . . 6 ⊢ ({1} = {0} → 1 = 0) |
13 | 10, 12 | mto 196 | . . . . 5 ⊢ ¬ {1} = {0} |
14 | elnnuz 12862 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
15 | eluzfz1 13504 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
16 | 14, 15 | sylbi 216 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ (1...𝑁)) |
17 | 16 | ne0d 4334 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅) |
18 | rnxp 6166 | . . . . . . 7 ⊢ ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {1}) = {1}) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ran ((1...𝑁) × {1}) = {1}) |
20 | rnxp 6166 | . . . . . . 7 ⊢ ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {0}) = {0}) | |
21 | 17, 20 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ran ((1...𝑁) × {0}) = {0}) |
22 | 19, 21 | eqeq12d 2748 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0}) ↔ {1} = {0})) |
23 | 13, 22 | mtbiri 326 | . . . 4 ⊢ (𝑁 ∈ ℕ → ¬ ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0})) |
24 | rneq 5933 | . . . 4 ⊢ (((1...𝑁) × {1}) = ((1...𝑁) × {0}) → ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0})) | |
25 | 23, 24 | nsyl 140 | . . 3 ⊢ (𝑁 ∈ ℕ → ¬ ((1...𝑁) × {1}) = ((1...𝑁) × {0})) |
26 | 25 | neqned 2947 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})) |
27 | neeq1 3003 | . . 3 ⊢ (𝑥 = ((1...𝑁) × {1}) → (𝑥 ≠ 𝑦 ↔ ((1...𝑁) × {1}) ≠ 𝑦)) | |
28 | neeq2 3004 | . . 3 ⊢ (𝑦 = ((1...𝑁) × {0}) → (((1...𝑁) × {1}) ≠ 𝑦 ↔ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0}))) | |
29 | 27, 28 | rspc2ev 3623 | . 2 ⊢ ((((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
30 | 4, 8, 26, 29 | syl3anc 1371 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 ∅c0 4321 {csn 4627 × cxp 5673 ran crn 5676 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 0cc0 11106 1c1 11107 ℕcn 12208 ℤ≥cuz 12818 ...cfz 13480 𝔼cee 28135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-z 12555 df-uz 12819 df-fz 13481 df-ee 28138 |
This theorem is referenced by: btwndiff 34987 |
Copyright terms: Public domain | W3C validator |