Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axlowdim1 | Structured version Visualization version GIF version |
Description: The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 26838. (Contributed by Scott Fenton, 22-Apr-2013.) |
Ref | Expression |
---|---|
axlowdim1 | ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10664 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | 1 | fconst6 6547 | . . 3 ⊢ ((1...𝑁) × {1}):(1...𝑁)⟶ℝ |
3 | elee 26772 | . . 3 ⊢ (𝑁 ∈ ℕ → (((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {1}):(1...𝑁)⟶ℝ)) | |
4 | 2, 3 | mpbiri 261 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ∈ (𝔼‘𝑁)) |
5 | 0re 10666 | . . . 4 ⊢ 0 ∈ ℝ | |
6 | 5 | fconst6 6547 | . . 3 ⊢ ((1...𝑁) × {0}):(1...𝑁)⟶ℝ |
7 | elee 26772 | . . 3 ⊢ (𝑁 ∈ ℕ → (((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ↔ ((1...𝑁) × {0}):(1...𝑁)⟶ℝ)) | |
8 | 6, 7 | mpbiri 261 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {0}) ∈ (𝔼‘𝑁)) |
9 | ax-1ne0 10629 | . . . . . . 7 ⊢ 1 ≠ 0 | |
10 | 9 | neii 2951 | . . . . . 6 ⊢ ¬ 1 = 0 |
11 | 1ex 10660 | . . . . . . 7 ⊢ 1 ∈ V | |
12 | 11 | sneqr 4721 | . . . . . 6 ⊢ ({1} = {0} → 1 = 0) |
13 | 10, 12 | mto 200 | . . . . 5 ⊢ ¬ {1} = {0} |
14 | elnnuz 12307 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
15 | eluzfz1 12948 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
16 | 14, 15 | sylbi 220 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ (1...𝑁)) |
17 | 16 | ne0d 4230 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅) |
18 | rnxp 5992 | . . . . . . 7 ⊢ ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {1}) = {1}) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ran ((1...𝑁) × {1}) = {1}) |
20 | rnxp 5992 | . . . . . . 7 ⊢ ((1...𝑁) ≠ ∅ → ran ((1...𝑁) × {0}) = {0}) | |
21 | 17, 20 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ran ((1...𝑁) × {0}) = {0}) |
22 | 19, 21 | eqeq12d 2775 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0}) ↔ {1} = {0})) |
23 | 13, 22 | mtbiri 331 | . . . 4 ⊢ (𝑁 ∈ ℕ → ¬ ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0})) |
24 | rneq 5770 | . . . 4 ⊢ (((1...𝑁) × {1}) = ((1...𝑁) × {0}) → ran ((1...𝑁) × {1}) = ran ((1...𝑁) × {0})) | |
25 | 23, 24 | nsyl 142 | . . 3 ⊢ (𝑁 ∈ ℕ → ¬ ((1...𝑁) × {1}) = ((1...𝑁) × {0})) |
26 | 25 | neqned 2956 | . 2 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})) |
27 | neeq1 3011 | . . 3 ⊢ (𝑥 = ((1...𝑁) × {1}) → (𝑥 ≠ 𝑦 ↔ ((1...𝑁) × {1}) ≠ 𝑦)) | |
28 | neeq2 3012 | . . 3 ⊢ (𝑦 = ((1...𝑁) × {0}) → (((1...𝑁) × {1}) ≠ 𝑦 ↔ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0}))) | |
29 | 27, 28 | rspc2ev 3551 | . 2 ⊢ ((((1...𝑁) × {1}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {0}) ∈ (𝔼‘𝑁) ∧ ((1...𝑁) × {1}) ≠ ((1...𝑁) × {0})) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
30 | 4, 8, 26, 29 | syl3anc 1369 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ≠ wne 2949 ∃wrex 3069 ∅c0 4221 {csn 4515 × cxp 5515 ran crn 5518 ⟶wf 6324 ‘cfv 6328 (class class class)co 7143 ℝcr 10559 0cc0 10560 1c1 10561 ℕcn 11659 ℤ≥cuz 12267 ...cfz 12924 𝔼cee 26766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-1st 7686 df-2nd 7687 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-map 8411 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-z 12006 df-uz 12268 df-fz 12925 df-ee 26769 |
This theorem is referenced by: btwndiff 33863 |
Copyright terms: Public domain | W3C validator |