Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf1 Structured version   Visualization version   GIF version

Theorem fsetsnf1 47010
Description: The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetsnf.a . . 3 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 fsetsnf.f . . 3 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf 47009 . 2 (𝑆𝑉𝐹:𝐵𝐴)
42a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}))
5 opeq2 4856 . . . . . . . . 9 (𝑥 = 𝑚 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑚⟩)
65sneqd 4620 . . . . . . . 8 (𝑥 = 𝑚 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
76adantl 481 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑚) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
8 simpl 482 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
9 snex 5418 . . . . . . . 8 {⟨𝑆, 𝑚⟩} ∈ V
109a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑚⟩} ∈ V)
114, 7, 8, 10fvmptd 7004 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑚) = {⟨𝑆, 𝑚⟩})
12 opeq2 4856 . . . . . . . . 9 (𝑥 = 𝑛 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑛⟩)
1312sneqd 4620 . . . . . . . 8 (𝑥 = 𝑛 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
1413adantl 481 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑛) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
15 simpr 484 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
16 snex 5418 . . . . . . . 8 {⟨𝑆, 𝑛⟩} ∈ V
1716a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑛⟩} ∈ V)
184, 14, 15, 17fvmptd 7004 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑛) = {⟨𝑆, 𝑛⟩})
1911, 18eqeq12d 2750 . . . . 5 ((𝑚𝐵𝑛𝐵) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
2019adantl 481 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
21 opex 5451 . . . . . 6 𝑆, 𝑚⟩ ∈ V
2221sneqr 4822 . . . . 5 ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → ⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩)
23 opthg 5464 . . . . . . 7 ((𝑆𝑉𝑚𝐵) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
2423adantrr 717 . . . . . 6 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
25 simpr 484 . . . . . 6 ((𝑆 = 𝑆𝑚 = 𝑛) → 𝑚 = 𝑛)
2624, 25biimtrdi 253 . . . . 5 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ → 𝑚 = 𝑛))
2722, 26syl5 34 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → 𝑚 = 𝑛))
2820, 27sylbid 240 . . 3 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
2928ralrimivva 3189 . 2 (𝑆𝑉 → ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
30 dff13 7258 . 2 (𝐹:𝐵1-1𝐴 ↔ (𝐹:𝐵𝐴 ∧ ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛)))
313, 29, 30sylanbrc 583 1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2712  wral 3050  wrex 3059  Vcvv 3464  {csn 4608  cop 4614  cmpt 5207  wf 6538  1-1wf1 6539  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fv 6550
This theorem is referenced by:  fsetsnf1o  47012
  Copyright terms: Public domain W3C validator