| Step | Hyp | Ref
| Expression |
| 1 | | fsetsnf.a |
. . 3
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
| 2 | | fsetsnf.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
| 3 | 1, 2 | fsetsnf 47009 |
. 2
⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
| 4 | 2 | a1i 11 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉})) |
| 5 | | opeq2 4856 |
. . . . . . . . 9
⊢ (𝑥 = 𝑚 → 〈𝑆, 𝑥〉 = 〈𝑆, 𝑚〉) |
| 6 | 5 | sneqd 4620 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑚〉}) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ (((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) ∧ 𝑥 = 𝑚) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑚〉}) |
| 8 | | simpl 482 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝑚 ∈ 𝐵) |
| 9 | | snex 5418 |
. . . . . . . 8
⊢
{〈𝑆, 𝑚〉} ∈
V |
| 10 | 9 | a1i 11 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → {〈𝑆, 𝑚〉} ∈ V) |
| 11 | 4, 7, 8, 10 | fvmptd 7004 |
. . . . . 6
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (𝐹‘𝑚) = {〈𝑆, 𝑚〉}) |
| 12 | | opeq2 4856 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → 〈𝑆, 𝑥〉 = 〈𝑆, 𝑛〉) |
| 13 | 12 | sneqd 4620 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑛〉}) |
| 14 | 13 | adantl 481 |
. . . . . . 7
⊢ (((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) ∧ 𝑥 = 𝑛) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑛〉}) |
| 15 | | simpr 484 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ 𝐵) |
| 16 | | snex 5418 |
. . . . . . . 8
⊢
{〈𝑆, 𝑛〉} ∈
V |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → {〈𝑆, 𝑛〉} ∈ V) |
| 18 | 4, 14, 15, 17 | fvmptd 7004 |
. . . . . 6
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (𝐹‘𝑛) = {〈𝑆, 𝑛〉}) |
| 19 | 11, 18 | eqeq12d 2750 |
. . . . 5
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → ((𝐹‘𝑚) = (𝐹‘𝑛) ↔ {〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉})) |
| 20 | 19 | adantl 481 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → ((𝐹‘𝑚) = (𝐹‘𝑛) ↔ {〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉})) |
| 21 | | opex 5451 |
. . . . . 6
⊢
〈𝑆, 𝑚〉 ∈ V |
| 22 | 21 | sneqr 4822 |
. . . . 5
⊢
({〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉} → 〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉) |
| 23 | | opthg 5464 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑚 ∈ 𝐵) → (〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉 ↔ (𝑆 = 𝑆 ∧ 𝑚 = 𝑛))) |
| 24 | 23 | adantrr 717 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → (〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉 ↔ (𝑆 = 𝑆 ∧ 𝑚 = 𝑛))) |
| 25 | | simpr 484 |
. . . . . 6
⊢ ((𝑆 = 𝑆 ∧ 𝑚 = 𝑛) → 𝑚 = 𝑛) |
| 26 | 24, 25 | biimtrdi 253 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → (〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉 → 𝑚 = 𝑛)) |
| 27 | 22, 26 | syl5 34 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → ({〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉} → 𝑚 = 𝑛)) |
| 28 | 20, 27 | sylbid 240 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → ((𝐹‘𝑚) = (𝐹‘𝑛) → 𝑚 = 𝑛)) |
| 29 | 28 | ralrimivva 3189 |
. 2
⊢ (𝑆 ∈ 𝑉 → ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝐹‘𝑚) = (𝐹‘𝑛) → 𝑚 = 𝑛)) |
| 30 | | dff13 7258 |
. 2
⊢ (𝐹:𝐵–1-1→𝐴 ↔ (𝐹:𝐵⟶𝐴 ∧ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝐹‘𝑚) = (𝐹‘𝑛) → 𝑚 = 𝑛))) |
| 31 | 3, 29, 30 | sylanbrc 583 |
1
⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) |