Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf1 Structured version   Visualization version   GIF version

Theorem fsetsnf1 47061
Description: The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetsnf.a . . 3 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 fsetsnf.f . . 3 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf 47060 . 2 (𝑆𝑉𝐹:𝐵𝐴)
42a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}))
5 opeq2 4855 . . . . . . . . 9 (𝑥 = 𝑚 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑚⟩)
65sneqd 4618 . . . . . . . 8 (𝑥 = 𝑚 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
76adantl 481 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑚) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
8 simpl 482 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
9 snex 5411 . . . . . . . 8 {⟨𝑆, 𝑚⟩} ∈ V
109a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑚⟩} ∈ V)
114, 7, 8, 10fvmptd 6998 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑚) = {⟨𝑆, 𝑚⟩})
12 opeq2 4855 . . . . . . . . 9 (𝑥 = 𝑛 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑛⟩)
1312sneqd 4618 . . . . . . . 8 (𝑥 = 𝑛 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
1413adantl 481 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑛) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
15 simpr 484 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
16 snex 5411 . . . . . . . 8 {⟨𝑆, 𝑛⟩} ∈ V
1716a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑛⟩} ∈ V)
184, 14, 15, 17fvmptd 6998 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑛) = {⟨𝑆, 𝑛⟩})
1911, 18eqeq12d 2752 . . . . 5 ((𝑚𝐵𝑛𝐵) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
2019adantl 481 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
21 opex 5444 . . . . . 6 𝑆, 𝑚⟩ ∈ V
2221sneqr 4821 . . . . 5 ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → ⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩)
23 opthg 5457 . . . . . . 7 ((𝑆𝑉𝑚𝐵) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
2423adantrr 717 . . . . . 6 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
25 simpr 484 . . . . . 6 ((𝑆 = 𝑆𝑚 = 𝑛) → 𝑚 = 𝑛)
2624, 25biimtrdi 253 . . . . 5 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ → 𝑚 = 𝑛))
2722, 26syl5 34 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → 𝑚 = 𝑛))
2820, 27sylbid 240 . . 3 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
2928ralrimivva 3188 . 2 (𝑆𝑉 → ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
30 dff13 7252 . 2 (𝐹:𝐵1-1𝐴 ↔ (𝐹:𝐵𝐴 ∧ ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛)))
313, 29, 30sylanbrc 583 1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  {csn 4606  cop 4612  cmpt 5206  wf 6532  1-1wf1 6533  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544
This theorem is referenced by:  fsetsnf1o  47063
  Copyright terms: Public domain W3C validator