Step | Hyp | Ref
| Expression |
1 | | fsetsnf.a |
. . 3
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
2 | | fsetsnf.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
3 | 1, 2 | fsetsnf 44603 |
. 2
⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
4 | 2 | a1i 11 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉})) |
5 | | opeq2 4810 |
. . . . . . . . 9
⊢ (𝑥 = 𝑚 → 〈𝑆, 𝑥〉 = 〈𝑆, 𝑚〉) |
6 | 5 | sneqd 4577 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑚〉}) |
7 | 6 | adantl 483 |
. . . . . . 7
⊢ (((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) ∧ 𝑥 = 𝑚) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑚〉}) |
8 | | simpl 484 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝑚 ∈ 𝐵) |
9 | | snex 5363 |
. . . . . . . 8
⊢
{〈𝑆, 𝑚〉} ∈
V |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → {〈𝑆, 𝑚〉} ∈ V) |
11 | 4, 7, 8, 10 | fvmptd 6914 |
. . . . . 6
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (𝐹‘𝑚) = {〈𝑆, 𝑚〉}) |
12 | | opeq2 4810 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → 〈𝑆, 𝑥〉 = 〈𝑆, 𝑛〉) |
13 | 12 | sneqd 4577 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑛〉}) |
14 | 13 | adantl 483 |
. . . . . . 7
⊢ (((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) ∧ 𝑥 = 𝑛) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑛〉}) |
15 | | simpr 486 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ 𝐵) |
16 | | snex 5363 |
. . . . . . . 8
⊢
{〈𝑆, 𝑛〉} ∈
V |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → {〈𝑆, 𝑛〉} ∈ V) |
18 | 4, 14, 15, 17 | fvmptd 6914 |
. . . . . 6
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (𝐹‘𝑛) = {〈𝑆, 𝑛〉}) |
19 | 11, 18 | eqeq12d 2752 |
. . . . 5
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → ((𝐹‘𝑚) = (𝐹‘𝑛) ↔ {〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉})) |
20 | 19 | adantl 483 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → ((𝐹‘𝑚) = (𝐹‘𝑛) ↔ {〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉})) |
21 | | opex 5392 |
. . . . . 6
⊢
〈𝑆, 𝑚〉 ∈ V |
22 | 21 | sneqr 4777 |
. . . . 5
⊢
({〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉} → 〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉) |
23 | | opthg 5405 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑚 ∈ 𝐵) → (〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉 ↔ (𝑆 = 𝑆 ∧ 𝑚 = 𝑛))) |
24 | 23 | adantrr 715 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → (〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉 ↔ (𝑆 = 𝑆 ∧ 𝑚 = 𝑛))) |
25 | | simpr 486 |
. . . . . 6
⊢ ((𝑆 = 𝑆 ∧ 𝑚 = 𝑛) → 𝑚 = 𝑛) |
26 | 24, 25 | syl6bi 253 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → (〈𝑆, 𝑚〉 = 〈𝑆, 𝑛〉 → 𝑚 = 𝑛)) |
27 | 22, 26 | syl5 34 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → ({〈𝑆, 𝑚〉} = {〈𝑆, 𝑛〉} → 𝑚 = 𝑛)) |
28 | 20, 27 | sylbid 239 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → ((𝐹‘𝑚) = (𝐹‘𝑛) → 𝑚 = 𝑛)) |
29 | 28 | ralrimivva 3194 |
. 2
⊢ (𝑆 ∈ 𝑉 → ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝐹‘𝑚) = (𝐹‘𝑛) → 𝑚 = 𝑛)) |
30 | | dff13 7160 |
. 2
⊢ (𝐹:𝐵–1-1→𝐴 ↔ (𝐹:𝐵⟶𝐴 ∧ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝐹‘𝑚) = (𝐹‘𝑛) → 𝑚 = 𝑛))) |
31 | 3, 29, 30 | sylanbrc 584 |
1
⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) |