Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf1 Structured version   Visualization version   GIF version

Theorem fsetsnf1 44604
Description: The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetsnf.a . . 3 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 fsetsnf.f . . 3 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf 44603 . 2 (𝑆𝑉𝐹:𝐵𝐴)
42a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}))
5 opeq2 4810 . . . . . . . . 9 (𝑥 = 𝑚 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑚⟩)
65sneqd 4577 . . . . . . . 8 (𝑥 = 𝑚 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
76adantl 483 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑚) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
8 simpl 484 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
9 snex 5363 . . . . . . . 8 {⟨𝑆, 𝑚⟩} ∈ V
109a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑚⟩} ∈ V)
114, 7, 8, 10fvmptd 6914 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑚) = {⟨𝑆, 𝑚⟩})
12 opeq2 4810 . . . . . . . . 9 (𝑥 = 𝑛 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑛⟩)
1312sneqd 4577 . . . . . . . 8 (𝑥 = 𝑛 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
1413adantl 483 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑛) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
15 simpr 486 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
16 snex 5363 . . . . . . . 8 {⟨𝑆, 𝑛⟩} ∈ V
1716a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑛⟩} ∈ V)
184, 14, 15, 17fvmptd 6914 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑛) = {⟨𝑆, 𝑛⟩})
1911, 18eqeq12d 2752 . . . . 5 ((𝑚𝐵𝑛𝐵) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
2019adantl 483 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
21 opex 5392 . . . . . 6 𝑆, 𝑚⟩ ∈ V
2221sneqr 4777 . . . . 5 ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → ⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩)
23 opthg 5405 . . . . . . 7 ((𝑆𝑉𝑚𝐵) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
2423adantrr 715 . . . . . 6 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
25 simpr 486 . . . . . 6 ((𝑆 = 𝑆𝑚 = 𝑛) → 𝑚 = 𝑛)
2624, 25syl6bi 253 . . . . 5 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ → 𝑚 = 𝑛))
2722, 26syl5 34 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → 𝑚 = 𝑛))
2820, 27sylbid 239 . . 3 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
2928ralrimivva 3194 . 2 (𝑆𝑉 → ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
30 dff13 7160 . 2 (𝐹:𝐵1-1𝐴 ↔ (𝐹:𝐵𝐴 ∧ ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛)))
313, 29, 30sylanbrc 584 1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  {cab 2713  wral 3062  wrex 3071  Vcvv 3437  {csn 4565  cop 4571  cmpt 5164  wf 6454  1-1wf1 6455  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fv 6466
This theorem is referenced by:  fsetsnf1o  44606
  Copyright terms: Public domain W3C validator