Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf1 Structured version   Visualization version   GIF version

Theorem fsetsnf1 44497
Description: The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetsnf.a . . 3 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 fsetsnf.f . . 3 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf 44496 . 2 (𝑆𝑉𝐹:𝐵𝐴)
42a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}))
5 opeq2 4810 . . . . . . . . 9 (𝑥 = 𝑚 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑚⟩)
65sneqd 4578 . . . . . . . 8 (𝑥 = 𝑚 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
76adantl 481 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑚) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑚⟩})
8 simpl 482 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
9 snex 5357 . . . . . . . 8 {⟨𝑆, 𝑚⟩} ∈ V
109a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑚⟩} ∈ V)
114, 7, 8, 10fvmptd 6876 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑚) = {⟨𝑆, 𝑚⟩})
12 opeq2 4810 . . . . . . . . 9 (𝑥 = 𝑛 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑛⟩)
1312sneqd 4578 . . . . . . . 8 (𝑥 = 𝑛 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
1413adantl 481 . . . . . . 7 (((𝑚𝐵𝑛𝐵) ∧ 𝑥 = 𝑛) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
15 simpr 484 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
16 snex 5357 . . . . . . . 8 {⟨𝑆, 𝑛⟩} ∈ V
1716a1i 11 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → {⟨𝑆, 𝑛⟩} ∈ V)
184, 14, 15, 17fvmptd 6876 . . . . . 6 ((𝑚𝐵𝑛𝐵) → (𝐹𝑛) = {⟨𝑆, 𝑛⟩})
1911, 18eqeq12d 2755 . . . . 5 ((𝑚𝐵𝑛𝐵) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
2019adantl 481 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) ↔ {⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩}))
21 opex 5381 . . . . . 6 𝑆, 𝑚⟩ ∈ V
2221sneqr 4776 . . . . 5 ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → ⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩)
23 opthg 5394 . . . . . . 7 ((𝑆𝑉𝑚𝐵) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
2423adantrr 713 . . . . . 6 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ ↔ (𝑆 = 𝑆𝑚 = 𝑛)))
25 simpr 484 . . . . . 6 ((𝑆 = 𝑆𝑚 = 𝑛) → 𝑚 = 𝑛)
2624, 25syl6bi 252 . . . . 5 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → (⟨𝑆, 𝑚⟩ = ⟨𝑆, 𝑛⟩ → 𝑚 = 𝑛))
2722, 26syl5 34 . . . 4 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ({⟨𝑆, 𝑚⟩} = {⟨𝑆, 𝑛⟩} → 𝑚 = 𝑛))
2820, 27sylbid 239 . . 3 ((𝑆𝑉 ∧ (𝑚𝐵𝑛𝐵)) → ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
2928ralrimivva 3116 . 2 (𝑆𝑉 → ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛))
30 dff13 7122 . 2 (𝐹:𝐵1-1𝐴 ↔ (𝐹:𝐵𝐴 ∧ ∀𝑚𝐵𝑛𝐵 ((𝐹𝑚) = (𝐹𝑛) → 𝑚 = 𝑛)))
313, 29, 30sylanbrc 582 1 (𝑆𝑉𝐹:𝐵1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  {cab 2716  wral 3065  wrex 3066  Vcvv 3430  {csn 4566  cop 4572  cmpt 5161  wf 6426  1-1wf1 6427  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fv 6438
This theorem is referenced by:  fsetsnf1o  44499
  Copyright terms: Public domain W3C validator