MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsndifnop Structured version   Visualization version   GIF version

Theorem funsndifnop 7185
Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsndifnop (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))

Proof of Theorem funsndifnop
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5774 . . 3 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
2 funsndifnop.g . . . . . 6 𝐺 = {⟨𝐴, 𝐵⟩}
3 funsndifnop.a . . . . . . . 8 𝐴 ∈ V
4 funsndifnop.b . . . . . . . 8 𝐵 ∈ V
53, 4funsn 6631 . . . . . . 7 Fun {⟨𝐴, 𝐵⟩}
6 funeq 6598 . . . . . . 7 (𝐺 = {⟨𝐴, 𝐵⟩} → (Fun 𝐺 ↔ Fun {⟨𝐴, 𝐵⟩}))
75, 6mpbiri 258 . . . . . 6 (𝐺 = {⟨𝐴, 𝐵⟩} → Fun 𝐺)
82, 7ax-mp 5 . . . . 5 Fun 𝐺
9 funeq 6598 . . . . . . 7 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ Fun ⟨𝑥, 𝑦⟩))
10 vex 3492 . . . . . . . 8 𝑥 ∈ V
11 vex 3492 . . . . . . . 8 𝑦 ∈ V
1210, 11funop 7183 . . . . . . 7 (Fun ⟨𝑥, 𝑦⟩ ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}))
139, 12bitrdi 287 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩})))
14 eqeq2 2752 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ ↔ 𝐺 = {⟨𝑎, 𝑎⟩}))
15 eqeq1 2744 . . . . . . . . . . . . 13 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} ↔ {⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩}))
16 opex 5484 . . . . . . . . . . . . . . 15 𝐴, 𝐵⟩ ∈ V
1716sneqr 4865 . . . . . . . . . . . . . 14 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩)
183, 4opth 5496 . . . . . . . . . . . . . . 15 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ ↔ (𝐴 = 𝑎𝐵 = 𝑎))
19 eqtr3 2766 . . . . . . . . . . . . . . . 16 ((𝐴 = 𝑎𝐵 = 𝑎) → 𝐴 = 𝐵)
2019a1d 25 . . . . . . . . . . . . . . 15 ((𝐴 = 𝑎𝐵 = 𝑎) → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2118, 20sylbi 217 . . . . . . . . . . . . . 14 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2217, 21syl 17 . . . . . . . . . . . . 13 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2315, 22biimtrdi 253 . . . . . . . . . . . 12 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
242, 23ax-mp 5 . . . . . . . . . . 11 (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2514, 24biimtrdi 253 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
2625com23 86 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)))
2726impcom 407 . . . . . . . 8 ((𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2827exlimiv 1929 . . . . . . 7 (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2928com12 32 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → 𝐴 = 𝐵))
3013, 29sylbid 240 . . . . 5 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺𝐴 = 𝐵))
318, 30mpi 20 . . . 4 (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
3231exlimivv 1931 . . 3 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
331, 32sylbi 217 . 2 (𝐺 ∈ (V × V) → 𝐴 = 𝐵)
3433necon3ai 2971 1 (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  {csn 4648  cop 4654   × cxp 5698  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  funsneqopb  7186  snstrvtxval  29072  snstriedgval  29073
  Copyright terms: Public domain W3C validator