MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsndifnop Structured version   Visualization version   GIF version

Theorem funsndifnop 6894
Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsndifnop (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))

Proof of Theorem funsndifnop
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5594 . . 3 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
2 funsndifnop.g . . . . . 6 𝐺 = {⟨𝐴, 𝐵⟩}
3 funsndifnop.a . . . . . . . 8 𝐴 ∈ V
4 funsndifnop.b . . . . . . . 8 𝐵 ∈ V
53, 4funsn 6381 . . . . . . 7 Fun {⟨𝐴, 𝐵⟩}
6 funeq 6348 . . . . . . 7 (𝐺 = {⟨𝐴, 𝐵⟩} → (Fun 𝐺 ↔ Fun {⟨𝐴, 𝐵⟩}))
75, 6mpbiri 261 . . . . . 6 (𝐺 = {⟨𝐴, 𝐵⟩} → Fun 𝐺)
82, 7ax-mp 5 . . . . 5 Fun 𝐺
9 funeq 6348 . . . . . . 7 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ Fun ⟨𝑥, 𝑦⟩))
10 vex 3447 . . . . . . . 8 𝑥 ∈ V
11 vex 3447 . . . . . . . 8 𝑦 ∈ V
1210, 11funop 6892 . . . . . . 7 (Fun ⟨𝑥, 𝑦⟩ ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}))
139, 12syl6bb 290 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩})))
14 eqeq2 2813 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ ↔ 𝐺 = {⟨𝑎, 𝑎⟩}))
15 eqeq1 2805 . . . . . . . . . . . . 13 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} ↔ {⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩}))
16 opex 5324 . . . . . . . . . . . . . . 15 𝐴, 𝐵⟩ ∈ V
1716sneqr 4734 . . . . . . . . . . . . . 14 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩)
183, 4opth 5336 . . . . . . . . . . . . . . 15 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ ↔ (𝐴 = 𝑎𝐵 = 𝑎))
19 eqtr3 2823 . . . . . . . . . . . . . . . 16 ((𝐴 = 𝑎𝐵 = 𝑎) → 𝐴 = 𝐵)
2019a1d 25 . . . . . . . . . . . . . . 15 ((𝐴 = 𝑎𝐵 = 𝑎) → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2118, 20sylbi 220 . . . . . . . . . . . . . 14 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2217, 21syl 17 . . . . . . . . . . . . 13 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2315, 22syl6bi 256 . . . . . . . . . . . 12 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
242, 23ax-mp 5 . . . . . . . . . . 11 (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2514, 24syl6bi 256 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
2625com23 86 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)))
2726impcom 411 . . . . . . . 8 ((𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2827exlimiv 1931 . . . . . . 7 (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2928com12 32 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → 𝐴 = 𝐵))
3013, 29sylbid 243 . . . . 5 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺𝐴 = 𝐵))
318, 30mpi 20 . . . 4 (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
3231exlimivv 1933 . . 3 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
331, 32sylbi 220 . 2 (𝐺 ∈ (V × V) → 𝐴 = 𝐵)
3433necon3ai 3015 1 (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2112  wne 2990  Vcvv 3444  {csn 4528  cop 4534   × cxp 5521  Fun wfun 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336
This theorem is referenced by:  funsneqopb  6895  snstrvtxval  26833  snstriedgval  26834
  Copyright terms: Public domain W3C validator