MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsndifnop Structured version   Visualization version   GIF version

Theorem funsndifnop 7150
Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsndifnop (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))

Proof of Theorem funsndifnop
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5749 . . 3 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
2 funsndifnop.g . . . . . 6 𝐺 = {⟨𝐴, 𝐵⟩}
3 funsndifnop.a . . . . . . . 8 𝐴 ∈ V
4 funsndifnop.b . . . . . . . 8 𝐵 ∈ V
53, 4funsn 6600 . . . . . . 7 Fun {⟨𝐴, 𝐵⟩}
6 funeq 6567 . . . . . . 7 (𝐺 = {⟨𝐴, 𝐵⟩} → (Fun 𝐺 ↔ Fun {⟨𝐴, 𝐵⟩}))
75, 6mpbiri 257 . . . . . 6 (𝐺 = {⟨𝐴, 𝐵⟩} → Fun 𝐺)
82, 7ax-mp 5 . . . . 5 Fun 𝐺
9 funeq 6567 . . . . . . 7 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ Fun ⟨𝑥, 𝑦⟩))
10 vex 3476 . . . . . . . 8 𝑥 ∈ V
11 vex 3476 . . . . . . . 8 𝑦 ∈ V
1210, 11funop 7148 . . . . . . 7 (Fun ⟨𝑥, 𝑦⟩ ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}))
139, 12bitrdi 286 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩})))
14 eqeq2 2742 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ ↔ 𝐺 = {⟨𝑎, 𝑎⟩}))
15 eqeq1 2734 . . . . . . . . . . . . 13 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} ↔ {⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩}))
16 opex 5463 . . . . . . . . . . . . . . 15 𝐴, 𝐵⟩ ∈ V
1716sneqr 4840 . . . . . . . . . . . . . 14 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩)
183, 4opth 5475 . . . . . . . . . . . . . . 15 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ ↔ (𝐴 = 𝑎𝐵 = 𝑎))
19 eqtr3 2756 . . . . . . . . . . . . . . . 16 ((𝐴 = 𝑎𝐵 = 𝑎) → 𝐴 = 𝐵)
2019a1d 25 . . . . . . . . . . . . . . 15 ((𝐴 = 𝑎𝐵 = 𝑎) → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2118, 20sylbi 216 . . . . . . . . . . . . . 14 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2217, 21syl 17 . . . . . . . . . . . . 13 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2315, 22syl6bi 252 . . . . . . . . . . . 12 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
242, 23ax-mp 5 . . . . . . . . . . 11 (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2514, 24syl6bi 252 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
2625com23 86 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)))
2726impcom 406 . . . . . . . 8 ((𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2827exlimiv 1931 . . . . . . 7 (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2928com12 32 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → 𝐴 = 𝐵))
3013, 29sylbid 239 . . . . 5 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺𝐴 = 𝐵))
318, 30mpi 20 . . . 4 (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
3231exlimivv 1933 . . 3 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
331, 32sylbi 216 . 2 (𝐺 ∈ (V × V) → 𝐴 = 𝐵)
3433necon3ai 2963 1 (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104  wne 2938  Vcvv 3472  {csn 4627  cop 4633   × cxp 5673  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by:  funsneqopb  7151  snstrvtxval  28564  snstriedgval  28565
  Copyright terms: Public domain W3C validator