Step | Hyp | Ref
| Expression |
1 | | hoidmv1le.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
2 | | hoidmv1le.z |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
3 | | snidg 4592 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ 𝑉 → 𝑍 ∈ {𝑍}) |
4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
5 | | hoidmv1le.x |
. . . . . . . . . . 11
⊢ 𝑋 = {𝑍} |
6 | 4, 5 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝑋) |
7 | 1, 6 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
8 | | hoidmv1le.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
9 | 8, 6 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
10 | 7, 9 | resubcld 11333 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
11 | 10 | rexrd 10956 |
. . . . . . 7
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈
ℝ*) |
12 | | pnfxr 10960 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → +∞ ∈
ℝ*) |
14 | 10 | ltpnfd 12786 |
. . . . . . 7
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) < +∞) |
15 | 11, 13, 14 | xrltled 12813 |
. . . . . 6
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤ +∞) |
16 | 15 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤ +∞) |
17 | | id 22 |
. . . . . . 7
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞ →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) |
18 | 17 | eqcomd 2744 |
. . . . . 6
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞ → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
19 | 18 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
20 | 16, 19 | breqtrd 5096 |
. . . 4
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
21 | | simpl 482 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → (𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍))) |
22 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) |
23 | | nnex 11909 |
. . . . . . . 8
⊢ ℕ
∈ V |
24 | 23 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ℕ ∈
V) |
25 | | hoidmv1le.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
26 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 = {𝑍}) |
27 | | snfi 8788 |
. . . . . . . . . . . . . . 15
⊢ {𝑍} ∈ Fin |
28 | 27 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑍} ∈ Fin) |
29 | 26, 28 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ Fin) |
30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
31 | 6 | ne0d 4266 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ≠ ∅) |
32 | 31 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅) |
33 | | hoidmv1le.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑋)) |
34 | 33 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑋)) |
35 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
37 | | hoidmv1le.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑋)) |
38 | 37 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑋)) |
39 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
41 | 25, 30, 32, 36, 40 | hoidmvn0val 44012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
42 | 5 | prodeq1i 15556 |
. . . . . . . . . . . 12
⊢
∏𝑘 ∈
𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
44 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ 𝑉) |
45 | 6 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ 𝑋) |
46 | 36, 45 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)‘𝑍) ∈ ℝ) |
47 | 40, 45 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
48 | | volicore 44009 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶‘𝑗)‘𝑍) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑍) ∈ ℝ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℝ) |
49 | 46, 47, 48 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℝ) |
50 | 49 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℂ) |
51 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑍 → ((𝐶‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑍)) |
52 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑍 → ((𝐷‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑍)) |
53 | 51, 52 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑍 → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
54 | 53 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑍 → (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
55 | 54 | prodsn 15600 |
. . . . . . . . . . . 12
⊢ ((𝑍 ∈ 𝑉 ∧ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℂ) → ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
56 | 44, 50, 55 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
57 | 41, 43, 56 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
58 | 57 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
59 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑙 → (𝑎‘𝑘) = (𝑎‘𝑙)) |
60 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑙 → (𝑏‘𝑘) = (𝑏‘𝑙)) |
61 | 59, 60 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑙 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙))) |
62 | 61 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑙 → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))) |
63 | 62 | cbvprodv 15554 |
. . . . . . . . . . . . . . . . 17
⊢
∏𝑘 ∈
𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))) |
64 | | ifeq2 4461 |
. . . . . . . . . . . . . . . . 17
⊢
(∏𝑘 ∈
𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))) → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))))) |
65 | 63, 64 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))) |
66 | 65 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ (ℝ
↑m 𝑥) ∧
𝑏 ∈ (ℝ
↑m 𝑥))
→ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))))) |
67 | 66 | mpoeq3ia 7331 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))))) |
68 | 67 | mpteq2i 5175 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))))) |
69 | 25, 68 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))))) |
70 | 69, 30, 36, 40 | hoidmvcl 44010 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
71 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
72 | 70, 71 | fmptd 6970 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,)+∞)) |
73 | | icossicc 13097 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
74 | 73 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
75 | 72, 74 | fssd 6602 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
76 | 58, 75 | feq1dd 42592 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))):ℕ⟶(0[,]+∞)) |
77 | 76 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))):ℕ⟶(0[,]+∞)) |
78 | 24, 77 | sge0repnf 43814 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞)) |
79 | 22, 78 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) |
80 | 9 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝐴‘𝑍) ∈ ℝ) |
81 | 7 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝐵‘𝑍) ∈ ℝ) |
82 | | simplr 765 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝐴‘𝑍) < (𝐵‘𝑍)) |
83 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)) |
84 | 46, 83 | fmptd 6970 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)):ℕ⟶ℝ) |
85 | 84 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)):ℕ⟶ℝ) |
86 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)) |
87 | 47, 86 | fmptd 6970 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)):ℕ⟶ℝ) |
88 | 87 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)):ℕ⟶ℝ) |
89 | | hoidmv1le.s |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
90 | 5 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ 𝑋 ↔ 𝑘 ∈ {𝑍}) |
91 | 90 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ 𝑋 → 𝑘 ∈ {𝑍}) |
92 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ {𝑍} → 𝑘 = 𝑍) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑋 → 𝑘 = 𝑍) |
94 | 93, 53 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
95 | 94 | rgen 3073 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
∀𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
96 | | ixpeq2 8657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
97 | 95, 96 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
98 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
99 | 98 | iuneq2i 4942 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
100 | 99 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
101 | 89, 100 | sseqtrd 3957 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
102 | 101 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
103 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) → 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
104 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) → {〈𝑍, 𝑥〉} = {〈𝑍, 𝑥〉}) |
105 | | opeq2 4802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → 〈𝑍, 𝑦〉 = 〈𝑍, 𝑥〉) |
106 | 105 | sneqd 4570 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → {〈𝑍, 𝑦〉} = {〈𝑍, 𝑥〉}) |
107 | 106 | rspceeqv 3567 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑥〉}) → ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
108 | 103, 104,
107 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) → ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
109 | 108 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
110 | | elixpsn 8683 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑍 ∈ 𝑉 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ↔ ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
111 | 2, 110 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ↔ ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
112 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ↔ ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
113 | 109, 112 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
114 | 5 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑍} = 𝑋 |
115 | | ixpeq1 8654 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑍} = 𝑋 → X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
116 | 114, 115 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ X𝑘 ∈
{𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) |
117 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
118 | 93, 117 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑋 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
119 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
120 | 93, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑋 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
121 | 118, 120 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
122 | 121 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑋 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
123 | 122 | rgen 3073 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑘 ∈
𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
124 | | ixpeq2 8657 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑘 ∈
𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) → X𝑘 ∈ 𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
125 | 123, 124 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ X𝑘 ∈
𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
126 | 116, 125 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ X𝑘 ∈
{𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
127 | 126 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → X𝑘 ∈
{𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
128 | 127 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
129 | 113, 128 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
130 | 102, 129 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → {〈𝑍, 𝑥〉} ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
131 | | eliun 4925 |
. . . . . . . . . . . . . 14
⊢
({〈𝑍, 𝑥〉} ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑗 ∈ ℕ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
132 | 130, 131 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ∃𝑗 ∈ ℕ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
133 | | ixpeq1 8654 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 = {𝑍} → X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
134 | 5, 133 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
135 | 134 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈𝑍, 𝑥〉} ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
136 | 135 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈𝑍, 𝑥〉} ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
137 | 136 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
138 | | elixpsn 8683 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑍 ∈ 𝑉 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
139 | 2, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
140 | 139 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
141 | 137, 140 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
142 | | opex 5373 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
〈𝑍, 𝑥〉 ∈ V |
143 | 142 | sneqr 4768 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
({〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉) |
144 | 143 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉) |
145 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑥 ∈ V |
146 | 145 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑥 ∈ V) |
147 | | opthg 5386 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑥 ∈ V) → (〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉 ↔ (𝑍 = 𝑍 ∧ 𝑥 = 𝑦))) |
148 | 2, 146, 147 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉 ↔ (𝑍 = 𝑍 ∧ 𝑥 = 𝑦))) |
149 | 148 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → (〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉 ↔ (𝑍 = 𝑍 ∧ 𝑥 = 𝑦))) |
150 | 144, 149 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → (𝑍 = 𝑍 ∧ 𝑥 = 𝑦)) |
151 | 150 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑥 = 𝑦) |
152 | 151 | 3adant2 1129 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑥 = 𝑦) |
153 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
154 | 152, 153 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
155 | 154 | 3exp 1117 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → ({〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
156 | 155 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → ({〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
157 | 156 | rexlimdv 3211 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
158 | 141, 157 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
159 | 158 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
160 | 159 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∧ 𝑗 ∈ ℕ) → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
161 | 160 | reximdva 3202 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → (∃𝑗 ∈ ℕ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
162 | 132, 161 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
163 | | eliun 4925 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
164 | 162, 163 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → 𝑥 ∈ ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
165 | 164 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))𝑥 ∈ ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
166 | | dfss3 3905 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∀𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))𝑥 ∈ ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
167 | 165, 166 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
168 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))) |
169 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝐶‘𝑗) = (𝐶‘𝑖)) |
170 | 169 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
171 | 170 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑗 = 𝑖) → ((𝐶‘𝑗)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
172 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
173 | | fvexd 6771 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐶‘𝑖)‘𝑍) ∈ V) |
174 | 168, 171,
172, 173 | fvmptd 6864 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖) = ((𝐶‘𝑖)‘𝑍)) |
175 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))) |
176 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝐷‘𝑗) = (𝐷‘𝑖)) |
177 | 176 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
178 | 177 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑗 = 𝑖) → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
179 | | fvexd 6771 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐷‘𝑖)‘𝑍) ∈ V) |
180 | 175, 178,
172, 179 | fvmptd 6864 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) = ((𝐷‘𝑖)‘𝑍)) |
181 | 174, 180 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
182 | 181 | iuneq2dv 4945 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)) = ∪
𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
183 | 170, 177 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
184 | 183 | cbviunv 4966 |
. . . . . . . . . . . 12
⊢ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = ∪
𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) |
185 | 184 | eqcomi 2747 |
. . . . . . . . . . 11
⊢ ∪ 𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
186 | 185 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
187 | 182, 186 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = ∪
𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) |
188 | 167, 187 | sseqtrd 3957 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) |
189 | 188 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) |
190 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶‘𝑖)‘𝑍) ∈ V |
191 | 170, 83, 190 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖) = ((𝐶‘𝑖)‘𝑍)) |
192 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷‘𝑖)‘𝑍) ∈ V |
193 | 177, 86, 192 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) = ((𝐷‘𝑖)‘𝑍)) |
194 | 191, 193 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
195 | 194 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ →
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) = (vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
196 | 195 | mpteq2ia 5173 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
197 | | eqcom 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 ↔ 𝑖 = 𝑗) |
198 | 197 | imbi1i 349 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
199 | | eqcom 2745 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
200 | 199 | imbi2i 335 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 𝑗 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
201 | 198, 200 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
202 | 183, 201 | mpbi 229 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
203 | 202 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
204 | 203 | cbvmptv 5183 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
205 | 196, 204 | eqtri 2766 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
206 | 205 | fveq2i 6759 |
. . . . . . . . 9
⊢
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
207 | 206 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) →
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
208 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) |
209 | 207, 208 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) →
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))))) ∈ ℝ) |
210 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 − (𝐴‘𝑍)) = (𝑧 − (𝐴‘𝑍))) |
211 | 193 | breq1d 5080 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧 ↔ ((𝐷‘𝑖)‘𝑍) ≤ 𝑧)) |
212 | 211, 193 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ →
if(((𝑗 ∈ ℕ
↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧) = if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)) |
213 | 191, 212 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)) = (((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧))) |
214 | 213 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ →
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧))) = (vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)))) |
215 | 214 | mpteq2ia 5173 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)))) |
216 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = ℎ → (𝐶‘𝑖) = (𝐶‘ℎ)) |
217 | 216 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = ℎ → ((𝐶‘𝑖)‘𝑍) = ((𝐶‘ℎ)‘𝑍)) |
218 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = ℎ → (𝐷‘𝑖) = (𝐷‘ℎ)) |
219 | 218 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = ℎ → ((𝐷‘𝑖)‘𝑍) = ((𝐷‘ℎ)‘𝑍)) |
220 | 219 | breq1d 5080 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = ℎ → (((𝐷‘𝑖)‘𝑍) ≤ 𝑧 ↔ ((𝐷‘ℎ)‘𝑍) ≤ 𝑧)) |
221 | 220, 219 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = ℎ → if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧) = if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)) |
222 | 217, 221 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = ℎ → (((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)) = (((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧))) |
223 | 222 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = ℎ → (vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧))) = (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) |
224 | 223 | cbvmptv 5183 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) |
225 | 215, 224 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) |
226 | 225 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧))))) |
227 | | breq2 5074 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → (((𝐷‘ℎ)‘𝑍) ≤ 𝑤 ↔ ((𝐷‘ℎ)‘𝑍) ≤ 𝑧)) |
228 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
229 | 227, 228 | ifbieq2d 4482 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤) = if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)) |
230 | 229 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧) = if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)) |
231 | 230 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)) = (((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))) |
232 | 231 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧))) = (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))) |
233 | 232 | mpteq2dv 5172 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))))) |
234 | 226, 233 | eqtr2d 2779 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧))))) |
235 | 234 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 →
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))))) =
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))))) |
236 | 210, 235 | breq12d 5083 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → ((𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))))) ↔ (𝑧 − (𝐴‘𝑍)) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧))))))) |
237 | 236 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))))} = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑧 − (𝐴‘𝑍)) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))))} |
238 | | eqid 2738 |
. . . . . . 7
⊢
sup({𝑤 ∈
((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))))}, ℝ, < ) = sup({𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))))}, ℝ, < ) |
239 | 80, 81, 82, 85, 88, 189, 209, 237, 238 | hoidmv1lelem3 44021 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)))))) |
240 | 239, 207 | breqtrd 5096 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
241 | 21, 79, 240 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
242 | 20, 241 | pm2.61dan 809 |
. . 3
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
243 | 25, 29, 31, 8, 1 | hoidmvn0val 44012 |
. . . . . . 7
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
244 | 26 | prodeq1d 15559 |
. . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
245 | | volicore 44009 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
246 | 9, 7, 245 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
247 | 246 | recnd 10934 |
. . . . . . . 8
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℂ) |
248 | 117, 119 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
249 | 248 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑘 = 𝑍 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
250 | 249 | prodsn 15600 |
. . . . . . . 8
⊢ ((𝑍 ∈ 𝑉 ∧ (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℂ) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
251 | 2, 247, 250 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
252 | 243, 244,
251 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
253 | 252 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
254 | | volico 43414 |
. . . . . . 7
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
255 | 9, 7, 254 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
256 | 255 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
257 | | iftrue 4462 |
. . . . . 6
⊢ ((𝐴‘𝑍) < (𝐵‘𝑍) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
258 | 257 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
259 | 253, 256,
258 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
260 | 58 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
261 | 260 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
262 | 259, 261 | breq12d 5083 |
. . 3
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → ((𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ↔ ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))))) |
263 | 242, 262 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
264 | 243 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
265 | 244 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
266 | 251 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
267 | 255 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
268 | | iffalse 4465 |
. . . . . 6
⊢ (¬
(𝐴‘𝑍) < (𝐵‘𝑍) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = 0) |
269 | 268 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = 0) |
270 | 266, 267,
269 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
271 | 264, 265,
270 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = 0) |
272 | 23 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
273 | 272, 75 | sge0ge0 43812 |
. . . 4
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
274 | 273 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
275 | 271, 274 | eqbrtrd 5092 |
. 2
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
276 | 263, 275 | pm2.61dan 809 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |