Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1le Structured version   Visualization version   GIF version

Theorem hoidmv1le 46250
Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of [Fremlin1] p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1le.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmv1le.z (𝜑𝑍𝑉)
hoidmv1le.x 𝑋 = {𝑍}
hoidmv1le.a (𝜑𝐴:𝑋⟶ℝ)
hoidmv1le.b (𝜑𝐵:𝑋⟶ℝ)
hoidmv1le.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
hoidmv1le.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
hoidmv1le.s (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
Assertion
Ref Expression
hoidmv1le (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑗,𝑘,𝑥   𝐵,𝑎,𝑏,𝑗,𝑘,𝑥   𝐶,𝑎,𝑏,𝑗,𝑘,𝑥   𝐷,𝑎,𝑏,𝑗,𝑘,𝑥   𝑘,𝑉   𝑋,𝑎,𝑏,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)   𝑉(𝑥,𝑗,𝑎,𝑏)   𝑋(𝑗)   𝑍(𝑎,𝑏)

Proof of Theorem hoidmv1le
Dummy variables 𝑖 𝑤 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoidmv1le.b . . . . . . . . . 10 (𝜑𝐵:𝑋⟶ℝ)
2 hoidmv1le.z . . . . . . . . . . . 12 (𝜑𝑍𝑉)
3 snidg 4659 . . . . . . . . . . . 12 (𝑍𝑉𝑍 ∈ {𝑍})
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝑍 ∈ {𝑍})
5 hoidmv1le.x . . . . . . . . . . 11 𝑋 = {𝑍}
64, 5eleqtrrdi 2837 . . . . . . . . . 10 (𝜑𝑍𝑋)
71, 6ffvelcdmd 7090 . . . . . . . . 9 (𝜑 → (𝐵𝑍) ∈ ℝ)
8 hoidmv1le.a . . . . . . . . . 10 (𝜑𝐴:𝑋⟶ℝ)
98, 6ffvelcdmd 7090 . . . . . . . . 9 (𝜑 → (𝐴𝑍) ∈ ℝ)
107, 9resubcld 11682 . . . . . . . 8 (𝜑 → ((𝐵𝑍) − (𝐴𝑍)) ∈ ℝ)
1110rexrd 11304 . . . . . . 7 (𝜑 → ((𝐵𝑍) − (𝐴𝑍)) ∈ ℝ*)
12 pnfxr 11308 . . . . . . . 8 +∞ ∈ ℝ*
1312a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
1410ltpnfd 13148 . . . . . . 7 (𝜑 → ((𝐵𝑍) − (𝐴𝑍)) < +∞)
1511, 13, 14xrltled 13176 . . . . . 6 (𝜑 → ((𝐵𝑍) − (𝐴𝑍)) ≤ +∞)
1615ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → ((𝐵𝑍) − (𝐴𝑍)) ≤ +∞)
17 id 22 . . . . . . 7 ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞ → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞)
1817eqcomd 2732 . . . . . 6 ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞ → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
1918adantl 480 . . . . 5 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
2016, 19breqtrd 5171 . . . 4 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → ((𝐵𝑍) − (𝐴𝑍)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
21 simpl 481 . . . . 5 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → (𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)))
22 simpr 483 . . . . . 6 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞)
23 nnex 12263 . . . . . . . 8 ℕ ∈ V
2423a1i 11 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → ℕ ∈ V)
25 hoidmv1le.l . . . . . . . . . . . 12 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
265a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑋 = {𝑍})
27 snfi 9072 . . . . . . . . . . . . . . 15 {𝑍} ∈ Fin
2827a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝑍} ∈ Fin)
2926, 28eqeltrd 2826 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
3029adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
316ne0d 4337 . . . . . . . . . . . . 13 (𝜑𝑋 ≠ ∅)
3231adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑋 ≠ ∅)
33 hoidmv1le.c . . . . . . . . . . . . . 14 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
3433ffvelcdmda 7089 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑋))
35 elmapi 8869 . . . . . . . . . . . . 13 ((𝐶𝑗) ∈ (ℝ ↑m 𝑋) → (𝐶𝑗):𝑋⟶ℝ)
3634, 35syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
37 hoidmv1le.d . . . . . . . . . . . . . 14 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
3837ffvelcdmda 7089 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑋))
39 elmapi 8869 . . . . . . . . . . . . 13 ((𝐷𝑗) ∈ (ℝ ↑m 𝑋) → (𝐷𝑗):𝑋⟶ℝ)
4038, 39syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
4125, 30, 32, 36, 40hoidmvn0val 46240 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
425prodeq1i 15914 . . . . . . . . . . . 12 𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
4342a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
442adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑍𝑉)
456adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑍𝑋)
4636, 45ffvelcdmd 7090 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)‘𝑍) ∈ ℝ)
4740, 45ffvelcdmd 7090 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝐷𝑗)‘𝑍) ∈ ℝ)
48 volicore 46237 . . . . . . . . . . . . . 14 ((((𝐶𝑗)‘𝑍) ∈ ℝ ∧ ((𝐷𝑗)‘𝑍) ∈ ℝ) → (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) ∈ ℝ)
4946, 47, 48syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) ∈ ℝ)
5049recnd 11282 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) ∈ ℂ)
51 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑘 = 𝑍 → ((𝐶𝑗)‘𝑘) = ((𝐶𝑗)‘𝑍))
52 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑘 = 𝑍 → ((𝐷𝑗)‘𝑘) = ((𝐷𝑗)‘𝑍))
5351, 52oveq12d 7433 . . . . . . . . . . . . . 14 (𝑘 = 𝑍 → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
5453fveq2d 6896 . . . . . . . . . . . . 13 (𝑘 = 𝑍 → (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) = (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
5554prodsn 15958 . . . . . . . . . . . 12 ((𝑍𝑉 ∧ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) ∈ ℂ) → ∏𝑘 ∈ {𝑍} (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) = (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
5644, 50, 55syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝑍} (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) = (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
5741, 43, 563eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
5857mpteq2dva 5245 . . . . . . . . 9 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))))
59 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑙 → (𝑎𝑘) = (𝑎𝑙))
60 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑙 → (𝑏𝑘) = (𝑏𝑙))
6159, 60oveq12d 7433 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝑎𝑙)[,)(𝑏𝑙)))
6261fveq2d 6896 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝑎𝑙)[,)(𝑏𝑙))))
6362cbvprodv 15912 . . . . . . . . . . . . . . . . 17 𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙)))
64 ifeq2 4530 . . . . . . . . . . . . . . . . 17 (∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙))) → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙)))))
6563, 64ax-mp 5 . . . . . . . . . . . . . . . 16 if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙))))
6665a1i 11 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (ℝ ↑m 𝑥) ∧ 𝑏 ∈ (ℝ ↑m 𝑥)) → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙)))))
6766mpoeq3ia 7494 . . . . . . . . . . . . . 14 (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙)))))
6867mpteq2i 5250 . . . . . . . . . . . . 13 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙))))))
6925, 68eqtri 2754 . . . . . . . . . . . 12 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙𝑥 (vol‘((𝑎𝑙)[,)(𝑏𝑙))))))
7069, 30, 36, 40hoidmvcl 46238 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
71 eqid 2726 . . . . . . . . . . 11 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))
7270, 71fmptd 7119 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))):ℕ⟶(0[,)+∞))
73 icossicc 13460 . . . . . . . . . . 11 (0[,)+∞) ⊆ (0[,]+∞)
7473a1i 11 . . . . . . . . . 10 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
7572, 74fssd 6736 . . . . . . . . 9 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))):ℕ⟶(0[,]+∞))
7658, 75feq1dd 44809 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))):ℕ⟶(0[,]+∞))
7776ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → (𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))):ℕ⟶(0[,]+∞))
7824, 77sge0repnf 46042 . . . . . 6 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞))
7922, 78mpbird 256 . . . . 5 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ)
809ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (𝐴𝑍) ∈ ℝ)
817ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (𝐵𝑍) ∈ ℝ)
82 simplr 767 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (𝐴𝑍) < (𝐵𝑍))
83 eqid 2726 . . . . . . . . 9 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))
8446, 83fmptd 7119 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍)):ℕ⟶ℝ)
8584ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍)):ℕ⟶ℝ)
86 eqid 2726 . . . . . . . . 9 (𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))
8747, 86fmptd 7119 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍)):ℕ⟶ℝ)
8887ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍)):ℕ⟶ℝ)
89 hoidmv1le.s . . . . . . . . . . . . . . . . 17 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
905eleq2i 2818 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘𝑋𝑘 ∈ {𝑍})
9190biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑋𝑘 ∈ {𝑍})
92 elsni 4642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ {𝑍} → 𝑘 = 𝑍)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑋𝑘 = 𝑍)
9493, 53syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
9594rgen 3053 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))
96 ixpeq2 8931 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
9795, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))
9897a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
9998iuneq2i 5016 . . . . . . . . . . . . . . . . . 18 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))
10099a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
10189, 100sseqtrd 4021 . . . . . . . . . . . . . . . 16 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
102101adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
103 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍)) → 𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍)))
104 eqidd 2727 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍)) → {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑥⟩})
105 opeq2 4874 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → ⟨𝑍, 𝑦⟩ = ⟨𝑍, 𝑥⟩)
106105sneqd 4637 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → {⟨𝑍, 𝑦⟩} = {⟨𝑍, 𝑥⟩})
107106rspceeqv 3631 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍)) ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑥⟩}) → ∃𝑦 ∈ ((𝐴𝑍)[,)(𝐵𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩})
108103, 104, 107syl2anc 582 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍)) → ∃𝑦 ∈ ((𝐴𝑍)[,)(𝐵𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩})
109108adantl 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → ∃𝑦 ∈ ((𝐴𝑍)[,)(𝐵𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩})
110 elixpsn 8957 . . . . . . . . . . . . . . . . . . 19 (𝑍𝑉 → ({⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) ↔ ∃𝑦 ∈ ((𝐴𝑍)[,)(𝐵𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}))
1112, 110syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) ↔ ∃𝑦 ∈ ((𝐴𝑍)[,)(𝐵𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}))
112111adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → ({⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) ↔ ∃𝑦 ∈ ((𝐴𝑍)[,)(𝐵𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}))
113109, 112mpbird 256 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → {⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)))
1145eqcomi 2735 . . . . . . . . . . . . . . . . . . . 20 {𝑍} = 𝑋
115 ixpeq1 8928 . . . . . . . . . . . . . . . . . . . 20 ({𝑍} = 𝑋X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) = X𝑘𝑋 ((𝐴𝑍)[,)(𝐵𝑍)))
116114, 115ax-mp 5 . . . . . . . . . . . . . . . . . . 19 X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) = X𝑘𝑋 ((𝐴𝑍)[,)(𝐵𝑍))
117 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
11893, 117syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑋 → (𝐴𝑘) = (𝐴𝑍))
119 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
12093, 119syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑋 → (𝐵𝑘) = (𝐵𝑍))
121118, 120oveq12d 7433 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
122121eqcomd 2732 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑋 → ((𝐴𝑍)[,)(𝐵𝑍)) = ((𝐴𝑘)[,)(𝐵𝑘)))
123122rgen 3053 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑋 ((𝐴𝑍)[,)(𝐵𝑍)) = ((𝐴𝑘)[,)(𝐵𝑘))
124 ixpeq2 8931 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝑋 ((𝐴𝑍)[,)(𝐵𝑍)) = ((𝐴𝑘)[,)(𝐵𝑘)) → X𝑘𝑋 ((𝐴𝑍)[,)(𝐵𝑍)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . . . 19 X𝑘𝑋 ((𝐴𝑍)[,)(𝐵𝑍)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
126116, 125eqtri 2754 . . . . . . . . . . . . . . . . . 18 X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
127126a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
128127adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → X𝑘 ∈ {𝑍} ((𝐴𝑍)[,)(𝐵𝑍)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
129113, 128eleqtrd 2828 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
130102, 129sseldd 3981 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → {⟨𝑍, 𝑥⟩} ∈ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
131 eliun 4999 . . . . . . . . . . . . . 14 ({⟨𝑍, 𝑥⟩} ∈ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ↔ ∃𝑗 ∈ ℕ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
132130, 131sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → ∃𝑗 ∈ ℕ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
133 ixpeq1 8928 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 = {𝑍} → X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
1345, 133ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))
135134eleq2i 2818 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ↔ {⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
136135biimpi 215 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) → {⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
137136adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) → {⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
138 elixpsn 8957 . . . . . . . . . . . . . . . . . . . 20 (𝑍𝑉 → ({⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}))
1392, 138syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ({⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}))
140139adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) → ({⟨𝑍, 𝑥⟩} ∈ X𝑘 ∈ {𝑍} (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}))
141137, 140mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) → ∃𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩})
142 opex 5462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑍, 𝑥⟩ ∈ V
143142sneqr 4841 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩} → ⟨𝑍, 𝑥⟩ = ⟨𝑍, 𝑦⟩)
144143adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}) → ⟨𝑍, 𝑥⟩ = ⟨𝑍, 𝑦⟩)
145 vex 3468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 ∈ V
146145a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑥 ∈ V)
147 opthg 5475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑍𝑉𝑥 ∈ V) → (⟨𝑍, 𝑥⟩ = ⟨𝑍, 𝑦⟩ ↔ (𝑍 = 𝑍𝑥 = 𝑦)))
1482, 146, 147syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (⟨𝑍, 𝑥⟩ = ⟨𝑍, 𝑦⟩ ↔ (𝑍 = 𝑍𝑥 = 𝑦)))
149148adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}) → (⟨𝑍, 𝑥⟩ = ⟨𝑍, 𝑦⟩ ↔ (𝑍 = 𝑍𝑥 = 𝑦)))
150144, 149mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}) → (𝑍 = 𝑍𝑥 = 𝑦))
151150simprd 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}) → 𝑥 = 𝑦)
1521513adant2 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}) → 𝑥 = 𝑦)
153 simp2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}) → 𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
154152, 153eqeltrd 2826 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ∧ {⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩}) → 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
1551543exp 1116 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) → ({⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩} → 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))))
156155adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) → (𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) → ({⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩} → 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))))
157156rexlimdv 3143 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) → (∃𝑦 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)){⟨𝑍, 𝑥⟩} = {⟨𝑍, 𝑦⟩} → 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
158141, 157mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))) → 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
159158ex 411 . . . . . . . . . . . . . . 15 (𝜑 → ({⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) → 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
160159ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) ∧ 𝑗 ∈ ℕ) → ({⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) → 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
161160reximdva 3158 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → (∃𝑗 ∈ ℕ {⟨𝑍, 𝑥⟩} ∈ X𝑘𝑋 (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) → ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
162132, 161mpd 15 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
163 eliun 4999 . . . . . . . . . . . 12 (𝑥 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ↔ ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
164162, 163sylibr 233 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))) → 𝑥 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
165164ralrimiva 3136 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))𝑥 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
166 dfss3 3969 . . . . . . . . . 10 (((𝐴𝑍)[,)(𝐵𝑍)) ⊆ 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) ↔ ∀𝑥 ∈ ((𝐴𝑍)[,)(𝐵𝑍))𝑥 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
167165, 166sylibr 233 . . . . . . . . 9 (𝜑 → ((𝐴𝑍)[,)(𝐵𝑍)) ⊆ 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
168 eqidd 2727 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍)))
169 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝐶𝑗) = (𝐶𝑖))
170169fveq1d 6894 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝐶𝑗)‘𝑍) = ((𝐶𝑖)‘𝑍))
171170adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑗 = 𝑖) → ((𝐶𝑗)‘𝑍) = ((𝐶𝑖)‘𝑍))
172 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
173 fvexd 6907 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → ((𝐶𝑖)‘𝑍) ∈ V)
174168, 171, 172, 173fvmptd 7007 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖) = ((𝐶𝑖)‘𝑍))
175 eqidd 2727 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍)))
176 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝐷𝑗) = (𝐷𝑖))
177176fveq1d 6894 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝐷𝑗)‘𝑍) = ((𝐷𝑖)‘𝑍))
178177adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑗 = 𝑖) → ((𝐷𝑗)‘𝑍) = ((𝐷𝑖)‘𝑍))
179 fvexd 6907 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → ((𝐷𝑖)‘𝑍) ∈ V)
180175, 178, 172, 179fvmptd 7007 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) = ((𝐷𝑖)‘𝑍))
181174, 180oveq12d 7433 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)))
182181iuneq2dv 5019 . . . . . . . . . 10 (𝜑 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)) = 𝑖 ∈ ℕ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)))
183170, 177oveq12d 7433 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)))
184183cbviunv 5042 . . . . . . . . . . . 12 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = 𝑖 ∈ ℕ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))
185184eqcomi 2735 . . . . . . . . . . 11 𝑖 ∈ ℕ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))
186185a1i 11 . . . . . . . . . 10 (𝜑 𝑖 ∈ ℕ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
187182, 186eqtr2d 2767 . . . . . . . . 9 (𝜑 𝑗 ∈ ℕ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)))
188167, 187sseqtrd 4021 . . . . . . . 8 (𝜑 → ((𝐴𝑍)[,)(𝐵𝑍)) ⊆ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)))
189188ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → ((𝐴𝑍)[,)(𝐵𝑍)) ⊆ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)))
190 fvex 6905 . . . . . . . . . . . . . . 15 ((𝐶𝑖)‘𝑍) ∈ V
191170, 83, 190fvmpt 7000 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖) = ((𝐶𝑖)‘𝑍))
192 fvex 6905 . . . . . . . . . . . . . . 15 ((𝐷𝑖)‘𝑍) ∈ V
193177, 86, 192fvmpt 7000 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) = ((𝐷𝑖)‘𝑍))
194191, 193oveq12d 7433 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)))
195194fveq2d 6896 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖))) = (vol‘(((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))))
196195mpteq2ia 5248 . . . . . . . . . . 11 (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))))
197 eqcom 2733 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖𝑖 = 𝑗)
198197imbi1i 348 . . . . . . . . . . . . . . 15 ((𝑗 = 𝑖 → (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))))
199 eqcom 2733 . . . . . . . . . . . . . . . 16 ((((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) ↔ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
200199imbi2i 335 . . . . . . . . . . . . . . 15 ((𝑖 = 𝑗 → (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
201198, 200bitri 274 . . . . . . . . . . . . . 14 ((𝑗 = 𝑖 → (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)) = (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
202183, 201mpbi 229 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
203202fveq2d 6896 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (vol‘(((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍))) = (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
204203cbvmptv 5258 . . . . . . . . . . 11 (𝑖 ∈ ℕ ↦ (vol‘(((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
205196, 204eqtri 2754 . . . . . . . . . 10 (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
206205fveq2i 6895 . . . . . . . . 9 ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))))
207206a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
208 simpr 483 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ)
209207, 208eqeltrd 2826 . . . . . . 7 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖))))) ∈ ℝ)
210 oveq1 7422 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 − (𝐴𝑍)) = (𝑧 − (𝐴𝑍)))
211193breq1d 5155 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧 ↔ ((𝐷𝑖)‘𝑍) ≤ 𝑧))
212211, 193ifbieq1d 4549 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ → if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧) = if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧))
213191, 212oveq12d 7433 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧)) = (((𝐶𝑖)‘𝑍)[,)if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧)))
214213fveq2d 6896 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧))) = (vol‘(((𝐶𝑖)‘𝑍)[,)if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧))))
215214mpteq2ia 5248 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝐶𝑖)‘𝑍)[,)if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧))))
216 fveq2 6892 . . . . . . . . . . . . . . . . 17 (𝑖 = → (𝐶𝑖) = (𝐶))
217216fveq1d 6894 . . . . . . . . . . . . . . . 16 (𝑖 = → ((𝐶𝑖)‘𝑍) = ((𝐶)‘𝑍))
218 fveq2 6892 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝐷𝑖) = (𝐷))
219218fveq1d 6894 . . . . . . . . . . . . . . . . . 18 (𝑖 = → ((𝐷𝑖)‘𝑍) = ((𝐷)‘𝑍))
220219breq1d 5155 . . . . . . . . . . . . . . . . 17 (𝑖 = → (((𝐷𝑖)‘𝑍) ≤ 𝑧 ↔ ((𝐷)‘𝑍) ≤ 𝑧))
221220, 219ifbieq1d 4549 . . . . . . . . . . . . . . . 16 (𝑖 = → if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧) = if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧))
222217, 221oveq12d 7433 . . . . . . . . . . . . . . 15 (𝑖 = → (((𝐶𝑖)‘𝑍)[,)if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧)) = (((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧)))
223222fveq2d 6896 . . . . . . . . . . . . . 14 (𝑖 = → (vol‘(((𝐶𝑖)‘𝑍)[,)if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧))) = (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧))))
224223cbvmptv 5258 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ ↦ (vol‘(((𝐶𝑖)‘𝑍)[,)if(((𝐷𝑖)‘𝑍) ≤ 𝑧, ((𝐷𝑖)‘𝑍), 𝑧)))) = ( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧))))
225215, 224eqtri 2754 . . . . . . . . . . . 12 (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧)))) = ( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧))))
226225a1i 11 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧)))) = ( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧)))))
227 breq2 5149 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → (((𝐷)‘𝑍) ≤ 𝑤 ↔ ((𝐷)‘𝑍) ≤ 𝑧))
228 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧𝑤 = 𝑧)
229227, 228ifbieq2d 4551 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤) = if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧))
230229eqcomd 2732 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧) = if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤))
231230oveq2d 7431 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧)) = (((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤)))
232231fveq2d 6896 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧))) = (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤))))
233232mpteq2dv 5247 . . . . . . . . . . 11 (𝑤 = 𝑧 → ( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑧, ((𝐷)‘𝑍), 𝑧)))) = ( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤)))))
234226, 233eqtr2d 2767 . . . . . . . . . 10 (𝑤 = 𝑧 → ( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧)))))
235234fveq2d 6896 . . . . . . . . 9 (𝑤 = 𝑧 → (Σ^‘( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤))))) = (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧))))))
236210, 235breq12d 5158 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤 − (𝐴𝑍)) ≤ (Σ^‘( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤))))) ↔ (𝑧 − (𝐴𝑍)) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧)))))))
237236cbvrabv 3431 . . . . . . 7 {𝑤 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝑤 − (𝐴𝑍)) ≤ (Σ^‘( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤)))))} = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝑧 − (𝐴𝑍)) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖), 𝑧)))))}
238 eqid 2726 . . . . . . 7 sup({𝑤 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝑤 − (𝐴𝑍)) ≤ (Σ^‘( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤)))))}, ℝ, < ) = sup({𝑤 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝑤 − (𝐴𝑍)) ≤ (Σ^‘( ∈ ℕ ↦ (vol‘(((𝐶)‘𝑍)[,)if(((𝐷)‘𝑍) ≤ 𝑤, ((𝐷)‘𝑍), 𝑤)))))}, ℝ, < )
23980, 81, 82, 85, 88, 189, 209, 237, 238hoidmv1lelem3 46249 . . . . . 6 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → ((𝐵𝑍) − (𝐴𝑍)) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷𝑗)‘𝑍))‘𝑖))))))
240239, 207breqtrd 5171 . . . . 5 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) ∈ ℝ) → ((𝐵𝑍) − (𝐴𝑍)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
24121, 79, 240syl2anc 582 . . . 4 (((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))) = +∞) → ((𝐵𝑍) − (𝐴𝑍)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
24220, 241pm2.61dan 811 . . 3 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → ((𝐵𝑍) − (𝐴𝑍)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
24325, 29, 31, 8, 1hoidmvn0val 46240 . . . . . . 7 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
24426prodeq1d 15917 . . . . . . 7 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
245 volicore 46237 . . . . . . . . . 10 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
2469, 7, 245syl2anc 582 . . . . . . . . 9 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
247246recnd 11282 . . . . . . . 8 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℂ)
248117, 119oveq12d 7433 . . . . . . . . . 10 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
249248fveq2d 6896 . . . . . . . . 9 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
250249prodsn 15958 . . . . . . . 8 ((𝑍𝑉 ∧ (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℂ) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
2512, 247, 250syl2anc 582 . . . . . . 7 (𝜑 → ∏𝑘 ∈ {𝑍} (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
252243, 244, 2513eqtrd 2770 . . . . . 6 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
253252adantr 479 . . . . 5 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → (𝐴(𝐿𝑋)𝐵) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
254 volico 45639 . . . . . . 7 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) = if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0))
2559, 7, 254syl2anc 582 . . . . . 6 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) = if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0))
256255adantr 479 . . . . 5 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) = if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0))
257 iftrue 4531 . . . . . 6 ((𝐴𝑍) < (𝐵𝑍) → if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0) = ((𝐵𝑍) − (𝐴𝑍)))
258257adantl 480 . . . . 5 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0) = ((𝐵𝑍) − (𝐴𝑍)))
259253, 256, 2583eqtrd 2770 . . . 4 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → (𝐴(𝐿𝑋)𝐵) = ((𝐵𝑍) − (𝐴𝑍)))
26058fveq2d 6896 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
261260adantr 479 . . . 4 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))))
262259, 261breq12d 5158 . . 3 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → ((𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ↔ ((𝐵𝑍) − (𝐴𝑍)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))))))
263242, 262mpbird 256 . 2 ((𝜑 ∧ (𝐴𝑍) < (𝐵𝑍)) → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
264243adantr 479 . . . 4 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
265244adantr 479 . . . 4 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
266251adantr 479 . . . . 5 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
267255adantr 479 . . . . 5 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) = if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0))
268 iffalse 4534 . . . . . 6 (¬ (𝐴𝑍) < (𝐵𝑍) → if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0) = 0)
269268adantl 480 . . . . 5 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → if((𝐴𝑍) < (𝐵𝑍), ((𝐵𝑍) − (𝐴𝑍)), 0) = 0)
270266, 267, 2693eqtrd 2770 . . . 4 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
271264, 265, 2703eqtrd 2770 . . 3 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → (𝐴(𝐿𝑋)𝐵) = 0)
27223a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
273272, 75sge0ge0 46040 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
274273adantr 479 . . 3 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
275271, 274eqbrtrd 5167 . 2 ((𝜑 ∧ ¬ (𝐴𝑍) < (𝐵𝑍)) → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
276263, 275pm2.61dan 811 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3420  Vcvv 3464  wss 3948  c0 4324  ifcif 4525  {csn 4625  cop 4631   ciun 4995   class class class wbr 5145  cmpt 5228  wf 6541  cfv 6545  (class class class)co 7415  cmpo 7417  m cmap 8846  Xcixp 8917  Fincfn 8965  supcsup 9475  cc 11146  cr 11147  0cc0 11148  +∞cpnf 11285  *cxr 11287   < clt 11288  cle 11289  cmin 11484  cn 12257  [,)cico 13373  [,]cicc 13374  cprod 15901  volcvol 25479  Σ^csumge0 46018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-inf2 9676  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-isom 6554  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-om 7868  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8848  df-pm 8849  df-ixp 8918  df-en 8966  df-dom 8967  df-sdom 8968  df-fin 8969  df-fi 9446  df-sup 9477  df-inf 9478  df-oi 9545  df-dju 9936  df-card 9974  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12258  df-2 12320  df-3 12321  df-n0 12518  df-z 12604  df-uz 12868  df-q 12978  df-rp 13022  df-xneg 13139  df-xadd 13140  df-xmul 13141  df-ioo 13375  df-ico 13377  df-icc 13378  df-fz 13532  df-fzo 13675  df-fl 13805  df-seq 14015  df-exp 14075  df-hash 14342  df-cj 15098  df-re 15099  df-im 15100  df-sqrt 15234  df-abs 15235  df-clim 15484  df-rlim 15485  df-sum 15685  df-prod 15902  df-rest 17431  df-topgen 17452  df-psmet 21330  df-xmet 21331  df-met 21332  df-bl 21333  df-mopn 21334  df-top 22883  df-topon 22900  df-bases 22936  df-cmp 23378  df-ovol 25480  df-vol 25481  df-sumge0 46019
This theorem is referenced by:  hoidmvle  46256
  Copyright terms: Public domain W3C validator