Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snen1g Structured version   Visualization version   GIF version

Theorem snen1g 43514
Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
snen1g ({𝐴} ≈ 1o𝐴 ∈ V)

Proof of Theorem snen1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2742 . . . 4 ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴})
2 vex 3482 . . . . . 6 𝑥 ∈ V
32sneqr 4845 . . . . 5 ({𝑥} = {𝐴} → 𝑥 = 𝐴)
4 sneq 4641 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
53, 4impbii 209 . . . 4 ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴)
61, 5bitri 275 . . 3 ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴)
76exbii 1845 . 2 (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴)
8 en1 9063 . 2 ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥})
9 isset 3492 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
107, 8, 93bitr4i 303 1 ({𝐴} ≈ 1o𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  {csn 4631   class class class wbr 5148  1oc1o 8498  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1o 8505  df-en 8985
This theorem is referenced by:  snen1el  43515
  Copyright terms: Public domain W3C validator