| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snen1g | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
| Ref | Expression |
|---|---|
| snen1g | ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2738 | . . . 4 ⊢ ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴}) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | sneqr 4791 | . . . . 5 ⊢ ({𝑥} = {𝐴} → 𝑥 = 𝐴) |
| 4 | sneq 4585 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 5 | 3, 4 | impbii 209 | . . . 4 ⊢ ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴) |
| 6 | 1, 5 | bitri 275 | . . 3 ⊢ ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴) |
| 7 | 6 | exbii 1849 | . 2 ⊢ (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴) |
| 8 | en1 8952 | . 2 ⊢ ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥}) | |
| 9 | isset 3450 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {csn 4575 class class class wbr 5093 1oc1o 8384 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-1o 8391 df-en 8876 |
| This theorem is referenced by: snen1el 43623 |
| Copyright terms: Public domain | W3C validator |