Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snen1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
Ref | Expression |
---|---|
snen1g | ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . . . 4 ⊢ ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴}) | |
2 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | sneqr 4768 | . . . . 5 ⊢ ({𝑥} = {𝐴} → 𝑥 = 𝐴) |
4 | sneq 4568 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
5 | 3, 4 | impbii 208 | . . . 4 ⊢ ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴) |
6 | 1, 5 | bitri 274 | . . 3 ⊢ ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴) |
7 | 6 | exbii 1851 | . 2 ⊢ (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴) |
8 | en1 8765 | . 2 ⊢ ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥}) | |
9 | isset 3435 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
10 | 7, 8, 9 | 3bitr4i 302 | 1 ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 {csn 4558 class class class wbr 5070 1oc1o 8260 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1o 8267 df-en 8692 |
This theorem is referenced by: snen1el 41030 |
Copyright terms: Public domain | W3C validator |