Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snen1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
Ref | Expression |
---|---|
snen1g | ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2744 | . . . 4 ⊢ ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴}) | |
2 | vex 3412 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | sneqr 4751 | . . . . 5 ⊢ ({𝑥} = {𝐴} → 𝑥 = 𝐴) |
4 | sneq 4551 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
5 | 3, 4 | impbii 212 | . . . 4 ⊢ ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴) |
6 | 1, 5 | bitri 278 | . . 3 ⊢ ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴) |
7 | 6 | exbii 1855 | . 2 ⊢ (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴) |
8 | en1 8698 | . 2 ⊢ ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥}) | |
9 | isset 3421 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
10 | 7, 8, 9 | 3bitr4i 306 | 1 ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∃wex 1787 ∈ wcel 2110 Vcvv 3408 {csn 4541 class class class wbr 5053 1oc1o 8195 ≈ cen 8623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-1o 8202 df-en 8627 |
This theorem is referenced by: snen1el 40817 |
Copyright terms: Public domain | W3C validator |