Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snen1g Structured version   Visualization version   GIF version

Theorem snen1g 43486
Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
snen1g ({𝐴} ≈ 1o𝐴 ∈ V)

Proof of Theorem snen1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2736 . . . 4 ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴})
2 vex 3448 . . . . . 6 𝑥 ∈ V
32sneqr 4800 . . . . 5 ({𝑥} = {𝐴} → 𝑥 = 𝐴)
4 sneq 4595 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
53, 4impbii 209 . . . 4 ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴)
61, 5bitri 275 . . 3 ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴)
76exbii 1848 . 2 (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴)
8 en1 8972 . 2 ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥})
9 isset 3458 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
107, 8, 93bitr4i 303 1 ({𝐴} ≈ 1o𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  {csn 4585   class class class wbr 5102  1oc1o 8404  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-en 8896
This theorem is referenced by:  snen1el  43487
  Copyright terms: Public domain W3C validator