Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snen1g Structured version   Visualization version   GIF version

Theorem snen1g 39939
Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
snen1g ({𝐴} ≈ 1o𝐴 ∈ V)

Proof of Theorem snen1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2828 . . . 4 ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴})
2 vex 3497 . . . . . 6 𝑥 ∈ V
32sneqr 4771 . . . . 5 ({𝑥} = {𝐴} → 𝑥 = 𝐴)
4 sneq 4577 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
53, 4impbii 211 . . . 4 ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴)
61, 5bitri 277 . . 3 ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴)
76exbii 1848 . 2 (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴)
8 en1 8576 . 2 ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥})
9 isset 3506 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
107, 8, 93bitr4i 305 1 ({𝐴} ≈ 1o𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  {csn 4567   class class class wbr 5066  1oc1o 8095  cen 8506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-1o 8102  df-en 8510
This theorem is referenced by:  snen1el  39940
  Copyright terms: Public domain W3C validator