![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snen1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
Ref | Expression |
---|---|
snen1g | ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2747 | . . . 4 ⊢ ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴}) | |
2 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | sneqr 4865 | . . . . 5 ⊢ ({𝑥} = {𝐴} → 𝑥 = 𝐴) |
4 | sneq 4658 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
5 | 3, 4 | impbii 209 | . . . 4 ⊢ ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴) |
6 | 1, 5 | bitri 275 | . . 3 ⊢ ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴) |
7 | 6 | exbii 1846 | . 2 ⊢ (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴) |
8 | en1 9086 | . 2 ⊢ ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥}) | |
9 | isset 3502 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 {csn 4648 class class class wbr 5166 1oc1o 8515 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-en 9004 |
This theorem is referenced by: snen1el 43487 |
Copyright terms: Public domain | W3C validator |