| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snen1g | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
| Ref | Expression |
|---|---|
| snen1g | ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2737 | . . . 4 ⊢ ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴}) | |
| 2 | vex 3438 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | sneqr 4790 | . . . . 5 ⊢ ({𝑥} = {𝐴} → 𝑥 = 𝐴) |
| 4 | sneq 4584 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 5 | 3, 4 | impbii 209 | . . . 4 ⊢ ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴) |
| 6 | 1, 5 | bitri 275 | . . 3 ⊢ ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴) |
| 7 | 6 | exbii 1849 | . 2 ⊢ (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴) |
| 8 | en1 8941 | . 2 ⊢ ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥}) | |
| 9 | isset 3448 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 {csn 4574 class class class wbr 5089 1oc1o 8373 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-1o 8380 df-en 8865 |
| This theorem is referenced by: snen1el 43537 |
| Copyright terms: Public domain | W3C validator |