Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snen1g Structured version   Visualization version   GIF version

Theorem snen1g 41131
Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
snen1g ({𝐴} ≈ 1o𝐴 ∈ V)

Proof of Theorem snen1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2745 . . . 4 ({𝐴} = {𝑥} ↔ {𝑥} = {𝐴})
2 vex 3436 . . . . . 6 𝑥 ∈ V
32sneqr 4771 . . . . 5 ({𝑥} = {𝐴} → 𝑥 = 𝐴)
4 sneq 4571 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
53, 4impbii 208 . . . 4 ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴)
61, 5bitri 274 . . 3 ({𝐴} = {𝑥} ↔ 𝑥 = 𝐴)
76exbii 1850 . 2 (∃𝑥{𝐴} = {𝑥} ↔ ∃𝑥 𝑥 = 𝐴)
8 en1 8811 . 2 ({𝐴} ≈ 1o ↔ ∃𝑥{𝐴} = {𝑥})
9 isset 3445 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
107, 8, 93bitr4i 303 1 ({𝐴} ≈ 1o𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  {csn 4561   class class class wbr 5074  1oc1o 8290  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-en 8734
This theorem is referenced by:  snen1el  41132
  Copyright terms: Public domain W3C validator