![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnex | Structured version Visualization version GIF version |
Description: The class of all singletons is a proper class. See also pwnex 7742. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.) |
Ref | Expression |
---|---|
snnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 7740 | . . 3 ⊢ (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
2 | df-nel 3047 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V) |
4 | vsnex 5428 | . . 3 ⊢ {𝑦} ∈ V | |
5 | vsnid 4664 | . . 3 ⊢ 𝑦 ∈ {𝑦} | |
6 | 4, 5 | pm3.2i 471 | . 2 ⊢ ({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) |
7 | 3, 6 | mpg 1799 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∉ wnel 3046 Vcvv 3474 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5298 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-un 3952 df-in 3954 df-ss 3964 df-sn 4628 df-pr 4630 df-uni 4908 df-iun 4998 |
This theorem is referenced by: fiprc 9041 |
Copyright terms: Public domain | W3C validator |