MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnex Structured version   Visualization version   GIF version

Theorem snnex 7691
Description: The class of all singletons is a proper class. See also pwnex 7692. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.)
Assertion
Ref Expression
snnex {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnex
StepHypRef Expression
1 abnex 7690 . . 3 (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2 df-nel 3033 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
31, 2sylibr 234 . 2 (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V)
4 vsnex 5370 . . 3 {𝑦} ∈ V
5 vsnid 4613 . . 3 𝑦 ∈ {𝑦}
64, 5pm3.2i 470 . 2 ({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦})
73, 6mpg 1798 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wnel 3032  Vcvv 3436  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-ss 3914  df-sn 4574  df-pr 4576  df-uni 4857  df-iun 4941
This theorem is referenced by:  fiprc  8966  termcnex  49687
  Copyright terms: Public domain W3C validator