Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnex | Structured version Visualization version GIF version |
Description: The class of all singletons is a proper class. See also pwnex 7587. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.) |
Ref | Expression |
---|---|
snnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 7585 | . . 3 ⊢ (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
2 | df-nel 3049 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V) |
4 | snex 5349 | . . 3 ⊢ {𝑦} ∈ V | |
5 | vsnid 4595 | . . 3 ⊢ 𝑦 ∈ {𝑦} | |
6 | 4, 5 | pm3.2i 470 | . 2 ⊢ ({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) |
7 | 3, 6 | mpg 1801 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∉ wnel 3048 Vcvv 3422 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iun 4923 |
This theorem is referenced by: fiprc 8789 |
Copyright terms: Public domain | W3C validator |