MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnex Structured version   Visualization version   GIF version

Theorem snnex 7760
Description: The class of all singletons is a proper class. See also pwnex 7761. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.)
Assertion
Ref Expression
snnex {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnex
StepHypRef Expression
1 abnex 7759 . . 3 (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2 df-nel 3044 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
31, 2sylibr 233 . 2 (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V)
4 vsnex 5431 . . 3 {𝑦} ∈ V
5 vsnid 4666 . . 3 𝑦 ∈ {𝑦}
64, 5pm3.2i 470 . 2 ({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦})
73, 6mpg 1792 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1532   = wceq 1534  wex 1774  wcel 2099  {cab 2705  wnel 3043  Vcvv 3471  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-ext 2699  ax-sep 5299  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-un 3952  df-in 3954  df-ss 3964  df-sn 4630  df-pr 4632  df-uni 4909  df-iun 4998
This theorem is referenced by:  fiprc  9069
  Copyright terms: Public domain W3C validator