MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnex Structured version   Visualization version   GIF version

Theorem snnex 7734
Description: The class of all singletons is a proper class. See also pwnex 7735. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.)
Assertion
Ref Expression
snnex {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnex
StepHypRef Expression
1 abnex 7733 . . 3 (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2 df-nel 3030 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
31, 2sylibr 234 . 2 (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V)
4 vsnex 5389 . . 3 {𝑦} ∈ V
5 vsnid 4627 . . 3 𝑦 ∈ {𝑦}
64, 5pm3.2i 470 . 2 ({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦})
73, 6mpg 1797 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wnel 3029  Vcvv 3447  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-un 3919  df-in 3921  df-ss 3931  df-sn 4590  df-pr 4592  df-uni 4872  df-iun 4957
This theorem is referenced by:  fiprc  9016  termcnex  49565
  Copyright terms: Public domain W3C validator