| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwnex | Structured version Visualization version GIF version | ||
| Description: The class of all power sets is a proper class. See also snnex 7697. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex 7696 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 2 | df-nel 3033 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
| 4 | vpwex 5317 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
| 5 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 6 | 5 | pwid 4571 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 7 | 4, 6 | pm3.2i 470 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
| 8 | 3, 7 | mpg 1798 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∉ wnel 3032 Vcvv 3436 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5236 ax-pow 5305 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4551 df-sn 4576 df-uni 4859 df-iun 4943 |
| This theorem is referenced by: topnex 22917 |
| Copyright terms: Public domain | W3C validator |