| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwnex | Structured version Visualization version GIF version | ||
| Description: The class of all power sets is a proper class. See also snnex 7757. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex 7756 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 2 | df-nel 3038 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
| 4 | vpwex 5352 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
| 5 | vex 3468 | . . . 4 ⊢ 𝑦 ∈ V | |
| 6 | 5 | pwid 4602 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 7 | 4, 6 | pm3.2i 470 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
| 8 | 3, 7 | mpg 1797 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∉ wnel 3037 Vcvv 3464 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-pow 5340 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-pw 4582 df-sn 4607 df-uni 4889 df-iun 4974 |
| This theorem is referenced by: topnex 22939 |
| Copyright terms: Public domain | W3C validator |