Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwnex | Structured version Visualization version GIF version |
Description: The class of all power sets is a proper class. See also snnex 7599. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 7598 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
2 | df-nel 3051 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
4 | vpwex 5303 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
5 | vex 3434 | . . . 4 ⊢ 𝑦 ∈ V | |
6 | 5 | pwid 4562 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
7 | 4, 6 | pm3.2i 470 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
8 | 3, 7 | mpg 1803 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 ∉ wnel 3050 Vcvv 3430 𝒫 cpw 4538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-pow 5291 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 df-pw 4540 df-sn 4567 df-uni 4845 df-iun 4931 |
This theorem is referenced by: topnex 22127 |
Copyright terms: Public domain | W3C validator |