Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnex Structured version   Visualization version   GIF version

Theorem pwnex 7456
 Description: The class of all power sets is a proper class. See also snnex 7455. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
pwnex {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem pwnex
StepHypRef Expression
1 abnex 7454 . . 3 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
2 df-nel 3112 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
31, 2sylibr 237 . 2 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V)
4 vpwex 5251 . . 3 𝒫 𝑦 ∈ V
5 vex 3474 . . . 4 𝑦 ∈ V
65pwid 4536 . . 3 𝑦 ∈ 𝒫 𝑦
74, 6pm3.2i 474 . 2 (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦)
83, 7mpg 1799 1 {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2115  {cab 2799   ∉ wnel 3111  Vcvv 3471  𝒫 cpw 4512 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-pow 5239  ax-un 7436 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-nel 3112  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-in 3917  df-ss 3927  df-pw 4514  df-sn 4541  df-uni 4812  df-iun 4894 This theorem is referenced by:  topnex  21579
 Copyright terms: Public domain W3C validator