Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwnex | Structured version Visualization version GIF version |
Description: The class of all power sets is a proper class. See also snnex 7602. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 7601 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
2 | df-nel 3052 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
4 | vpwex 5304 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
5 | vex 3435 | . . . 4 ⊢ 𝑦 ∈ V | |
6 | 5 | pwid 4563 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
7 | 4, 6 | pm3.2i 471 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
8 | 3, 7 | mpg 1804 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1540 = wceq 1542 ∃wex 1786 ∈ wcel 2110 {cab 2717 ∉ wnel 3051 Vcvv 3431 𝒫 cpw 4539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-pow 5292 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-pw 4541 df-sn 4568 df-uni 4846 df-iun 4932 |
This theorem is referenced by: topnex 22144 |
Copyright terms: Public domain | W3C validator |