MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnex Structured version   Visualization version   GIF version

Theorem pwnex 7603
Description: The class of all power sets is a proper class. See also snnex 7602. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
pwnex {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem pwnex
StepHypRef Expression
1 abnex 7601 . . 3 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
2 df-nel 3052 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
31, 2sylibr 233 . 2 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V)
4 vpwex 5304 . . 3 𝒫 𝑦 ∈ V
5 vex 3435 . . . 4 𝑦 ∈ V
65pwid 4563 . . 3 𝑦 ∈ 𝒫 𝑦
74, 6pm3.2i 471 . 2 (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦)
83, 7mpg 1804 1 {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wal 1540   = wceq 1542  wex 1786  wcel 2110  {cab 2717  wnel 3051  Vcvv 3431  𝒫 cpw 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-pow 5292  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-in 3899  df-ss 3909  df-pw 4541  df-sn 4568  df-uni 4846  df-iun 4932
This theorem is referenced by:  topnex  22144
  Copyright terms: Public domain W3C validator