MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnex Structured version   Visualization version   GIF version

Theorem pwnex 7698
Description: The class of all power sets is a proper class. See also snnex 7697. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
pwnex {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem pwnex
StepHypRef Expression
1 abnex 7696 . . 3 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
2 df-nel 3033 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
31, 2sylibr 234 . 2 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V)
4 vpwex 5317 . . 3 𝒫 𝑦 ∈ V
5 vex 3440 . . . 4 𝑦 ∈ V
65pwid 4571 . . 3 𝑦 ∈ 𝒫 𝑦
74, 6pm3.2i 470 . 2 (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦)
83, 7mpg 1798 1 {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wnel 3032  Vcvv 3436  𝒫 cpw 4549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5236  ax-pow 5305  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-pw 4551  df-sn 4576  df-uni 4859  df-iun 4943
This theorem is referenced by:  topnex  22917
  Copyright terms: Public domain W3C validator