![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwnex | Structured version Visualization version GIF version |
Description: The class of all power sets is a proper class. See also snnex 7745. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 7744 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
2 | df-nel 3048 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
4 | vpwex 5376 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
5 | vex 3479 | . . . 4 ⊢ 𝑦 ∈ V | |
6 | 5 | pwid 4625 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
7 | 4, 6 | pm3.2i 472 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
8 | 3, 7 | mpg 1800 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∉ wnel 3047 Vcvv 3475 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-sep 5300 ax-pow 5364 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-sn 4630 df-uni 4910 df-iun 5000 |
This theorem is referenced by: topnex 22499 |
Copyright terms: Public domain | W3C validator |