MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnex Structured version   Visualization version   GIF version

Theorem pwnex 7229
Description: The class of all power sets is a proper class. See also snnex 7228. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
pwnex {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem pwnex
StepHypRef Expression
1 abnex 7227 . . 3 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
2 df-nel 3104 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
31, 2sylibr 226 . 2 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V)
4 vpwex 5078 . . 3 𝒫 𝑦 ∈ V
5 vex 3418 . . . 4 𝑦 ∈ V
65pwid 4395 . . 3 𝑦 ∈ 𝒫 𝑦
74, 6pm3.2i 464 . 2 (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦)
83, 7mpg 1898 1 {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386  wal 1656   = wceq 1658  wex 1880  wcel 2166  {cab 2812  wnel 3103  Vcvv 3415  𝒫 cpw 4379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-pow 5066  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-nel 3104  df-ral 3123  df-rex 3124  df-v 3417  df-in 3806  df-ss 3813  df-pw 4381  df-sn 4399  df-uni 4660  df-iun 4743
This theorem is referenced by:  topnex  21172
  Copyright terms: Public domain W3C validator