Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiprc | Structured version Visualization version GIF version |
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
Ref | Expression |
---|---|
fiprc | ⊢ Fin ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnex 7670 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
2 | snfi 8909 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin | |
3 | eleq1 2824 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
4 | 2, 3 | mpbiri 257 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
5 | 4 | exlimiv 1932 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) |
6 | 5 | abssi 4015 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin |
7 | ssexg 5267 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
8 | 6, 7 | mpan 687 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
9 | 8 | con3i 154 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) |
10 | df-nel 3047 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
11 | df-nel 3047 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
12 | 9, 10, 11 | 3imtr4i 291 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ Fin ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2713 ∉ wnel 3046 Vcvv 3441 ⊆ wss 3898 {csn 4573 Fincfn 8804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-om 7781 df-1o 8367 df-en 8805 df-fin 8808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |