| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiprc | Structured version Visualization version GIF version | ||
| Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
| Ref | Expression |
|---|---|
| fiprc | ⊢ Fin ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnex 7698 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
| 2 | snfi 8975 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin | |
| 3 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
| 4 | 2, 3 | mpbiri 258 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
| 5 | 4 | exlimiv 1930 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) |
| 6 | 5 | abssi 4023 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin |
| 7 | ssexg 5265 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
| 8 | 6, 7 | mpan 690 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
| 9 | 8 | con3i 154 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) |
| 10 | df-nel 3030 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
| 11 | df-nel 3030 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) |
| 13 | 1, 12 | ax-mp 5 | 1 ⊢ Fin ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∉ wnel 3029 Vcvv 3438 ⊆ wss 3905 {csn 4579 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-om 7807 df-1o 8395 df-en 8880 df-fin 8883 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |