Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiprc | Structured version Visualization version GIF version |
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
Ref | Expression |
---|---|
fiprc | ⊢ Fin ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnex 7608 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
2 | snfi 8834 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin | |
3 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
4 | 2, 3 | mpbiri 257 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
5 | 4 | exlimiv 1933 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) |
6 | 5 | abssi 4003 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin |
7 | ssexg 5247 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
8 | 6, 7 | mpan 687 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
9 | 8 | con3i 154 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) |
10 | df-nel 3050 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
11 | df-nel 3050 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
12 | 9, 10, 11 | 3imtr4i 292 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ Fin ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∉ wnel 3049 Vcvv 3432 ⊆ wss 3887 {csn 4561 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |