MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiprc Structured version   Visualization version   GIF version

Theorem fiprc 9059
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc Fin ∉ V

Proof of Theorem fiprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 7752 . 2 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
2 snfi 9057 . . . . . . . 8 {𝑦} ∈ Fin
3 eleq1 2822 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
42, 3mpbiri 258 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
54exlimiv 1930 . . . . . 6 (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin)
65abssi 4045 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin
7 ssexg 5293 . . . . 5 (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
86, 7mpan 690 . . . 4 (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
98con3i 154 . . 3 (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V)
10 df-nel 3037 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
11 df-nel 3037 . . 3 (Fin ∉ V ↔ ¬ Fin ∈ V)
129, 10, 113imtr4i 292 . 2 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V)
131, 12ax-mp 5 1 Fin ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wnel 3036  Vcvv 3459  wss 3926  {csn 4601  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator