| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > son2lpi | Structured version Visualization version GIF version | ||
| Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| son2lpi | ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
| 2 | soi.2 | . . 3 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 3 | 1, 2 | soirri 6073 | . 2 ⊢ ¬ 𝐴𝑅𝐴 |
| 4 | 1, 2 | sotri 6074 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐴) |
| 5 | 3, 4 | mto 197 | 1 ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ⊆ wss 3902 class class class wbr 5091 Or wor 5523 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-po 5524 df-so 5525 df-xp 5622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |