![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > son2lpi | Structured version Visualization version GIF version |
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
son2lpi | ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
2 | soi.2 | . . 3 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
3 | 1, 2 | soirri 6158 | . 2 ⊢ ¬ 𝐴𝑅𝐴 |
4 | 1, 2 | sotri 6159 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐴) |
5 | 3, 4 | mto 197 | 1 ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ⊆ wss 3976 class class class wbr 5166 Or wor 5606 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-po 5607 df-so 5608 df-xp 5706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |