| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sotri | Structured version Visualization version GIF version | ||
| Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| sotri | ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 2 | 1 | brel 5703 | . . . 4 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ 𝑆) |
| 4 | 1 | brel 5703 | . . 3 ⊢ (𝐵𝑅𝐶 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
| 5 | 3, 4 | anim12i 613 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
| 6 | soi.1 | . . . 4 ⊢ 𝑅 Or 𝑆 | |
| 7 | sotr 5571 | . . . 4 ⊢ ((𝑅 Or 𝑆 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | |
| 8 | 6, 7 | mpan 690 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
| 9 | 8 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
| 10 | 5, 9 | mpcom 38 | 1 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 Or wor 5545 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-po 5546 df-so 5547 df-xp 5644 |
| This theorem is referenced by: son2lpi 6101 sotri2 6102 sotri3 6103 ltsonq 10922 ltbtwnnq 10931 nqpr 10967 prlem934 10986 ltexprlem4 10992 reclem2pr 11001 reclem4pr 11003 ltsosr 11047 addgt0sr 11057 supsrlem 11064 axpre-lttrn 11119 |
| Copyright terms: Public domain | W3C validator |