![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotri | Structured version Visualization version GIF version |
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
sotri | ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
2 | 1 | brel 5737 | . . . 4 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
3 | 2 | simpld 494 | . . 3 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ 𝑆) |
4 | 1 | brel 5737 | . . 3 ⊢ (𝐵𝑅𝐶 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
5 | 3, 4 | anim12i 612 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
6 | soi.1 | . . . 4 ⊢ 𝑅 Or 𝑆 | |
7 | sotr 5608 | . . . 4 ⊢ ((𝑅 Or 𝑆 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | |
8 | 6, 7 | mpan 689 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
9 | 8 | 3expb 1118 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
10 | 5, 9 | mpcom 38 | 1 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ⊆ wss 3945 class class class wbr 5142 Or wor 5583 × cxp 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-po 5584 df-so 5585 df-xp 5678 |
This theorem is referenced by: son2lpi 6128 sotri2 6129 sotri3 6130 ltsonq 10986 ltbtwnnq 10995 nqpr 11031 prlem934 11050 ltexprlem4 11056 reclem2pr 11065 reclem4pr 11067 ltsosr 11111 addgt0sr 11121 supsrlem 11128 axpre-lttrn 11183 |
Copyright terms: Public domain | W3C validator |