| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sotri2 | Structured version Visualization version GIF version | ||
| Description: A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| sotri2 | ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 2 | 1 | brel 5724 | . . . 4 ⊢ (𝐵𝑅𝐶 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐵𝑅𝐶 → 𝐵 ∈ 𝑆) |
| 4 | soi.1 | . . . . . . 7 ⊢ 𝑅 Or 𝑆 | |
| 5 | sotric 5596 | . . . . . . 7 ⊢ ((𝑅 Or 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴𝑅𝐵))) | |
| 6 | 4, 5 | mpan 690 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴𝑅𝐵))) |
| 7 | 6 | con2bid 354 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐵 = 𝐴 ∨ 𝐴𝑅𝐵) ↔ ¬ 𝐵𝑅𝐴)) |
| 8 | breq1 5127 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐵𝑅𝐶 ↔ 𝐴𝑅𝐶)) | |
| 9 | 8 | biimpd 229 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) |
| 10 | 4, 1 | sotri 6121 | . . . . . . 7 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| 11 | 10 | ex 412 | . . . . . 6 ⊢ (𝐴𝑅𝐵 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) |
| 12 | 9, 11 | jaoi 857 | . . . . 5 ⊢ ((𝐵 = 𝐴 ∨ 𝐴𝑅𝐵) → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) |
| 13 | 7, 12 | biimtrrdi 254 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (¬ 𝐵𝑅𝐴 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶))) |
| 14 | 13 | com3r 87 | . . 3 ⊢ (𝐵𝑅𝐶 → ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶))) |
| 15 | 3, 14 | mpand 695 | . 2 ⊢ (𝐵𝑅𝐶 → (𝐴 ∈ 𝑆 → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶))) |
| 16 | 15 | 3imp231 1112 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 Or wor 5565 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-po 5566 df-so 5567 df-xp 5665 |
| This theorem is referenced by: supsrlem 11130 |
| Copyright terms: Public domain | W3C validator |