|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sotri2 | Structured version Visualization version GIF version | ||
| Description: A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) | 
| Ref | Expression | 
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 | 
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | 
| Ref | Expression | 
|---|---|
| sotri2 | ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 2 | 1 | brel 5749 | . . . 4 ⊢ (𝐵𝑅𝐶 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) | 
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐵𝑅𝐶 → 𝐵 ∈ 𝑆) | 
| 4 | soi.1 | . . . . . . 7 ⊢ 𝑅 Or 𝑆 | |
| 5 | sotric 5621 | . . . . . . 7 ⊢ ((𝑅 Or 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴𝑅𝐵))) | |
| 6 | 4, 5 | mpan 690 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴𝑅𝐵))) | 
| 7 | 6 | con2bid 354 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐵 = 𝐴 ∨ 𝐴𝑅𝐵) ↔ ¬ 𝐵𝑅𝐴)) | 
| 8 | breq1 5145 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐵𝑅𝐶 ↔ 𝐴𝑅𝐶)) | |
| 9 | 8 | biimpd 229 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) | 
| 10 | 4, 1 | sotri 6146 | . . . . . . 7 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | 
| 11 | 10 | ex 412 | . . . . . 6 ⊢ (𝐴𝑅𝐵 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) | 
| 12 | 9, 11 | jaoi 857 | . . . . 5 ⊢ ((𝐵 = 𝐴 ∨ 𝐴𝑅𝐵) → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) | 
| 13 | 7, 12 | biimtrrdi 254 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (¬ 𝐵𝑅𝐴 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶))) | 
| 14 | 13 | com3r 87 | . . 3 ⊢ (𝐵𝑅𝐶 → ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶))) | 
| 15 | 3, 14 | mpand 695 | . 2 ⊢ (𝐵𝑅𝐶 → (𝐴 ∈ 𝑆 → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶))) | 
| 16 | 15 | 3imp231 1112 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 class class class wbr 5142 Or wor 5590 × cxp 5682 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-po 5591 df-so 5592 df-xp 5690 | 
| This theorem is referenced by: supsrlem 11152 | 
| Copyright terms: Public domain | W3C validator |