Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sotri2 | Structured version Visualization version GIF version |
Description: A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
sotri2 | ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
2 | 1 | brel 5652 | . . . 4 ⊢ (𝐵𝑅𝐶 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
3 | 2 | simpld 495 | . . 3 ⊢ (𝐵𝑅𝐶 → 𝐵 ∈ 𝑆) |
4 | soi.1 | . . . . . . 7 ⊢ 𝑅 Or 𝑆 | |
5 | sotric 5531 | . . . . . . 7 ⊢ ((𝑅 Or 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴𝑅𝐵))) | |
6 | 4, 5 | mpan 687 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴𝑅𝐵))) |
7 | 6 | con2bid 355 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐵 = 𝐴 ∨ 𝐴𝑅𝐵) ↔ ¬ 𝐵𝑅𝐴)) |
8 | breq1 5077 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐵𝑅𝐶 ↔ 𝐴𝑅𝐶)) | |
9 | 8 | biimpd 228 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) |
10 | 4, 1 | sotri 6032 | . . . . . . 7 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
11 | 10 | ex 413 | . . . . . 6 ⊢ (𝐴𝑅𝐵 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) |
12 | 9, 11 | jaoi 854 | . . . . 5 ⊢ ((𝐵 = 𝐴 ∨ 𝐴𝑅𝐵) → (𝐵𝑅𝐶 → 𝐴𝑅𝐶)) |
13 | 7, 12 | syl6bir 253 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (¬ 𝐵𝑅𝐴 → (𝐵𝑅𝐶 → 𝐴𝑅𝐶))) |
14 | 13 | com3r 87 | . . 3 ⊢ (𝐵𝑅𝐶 → ((𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶))) |
15 | 3, 14 | mpand 692 | . 2 ⊢ (𝐵𝑅𝐶 → (𝐴 ∈ 𝑆 → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶))) |
16 | 15 | 3imp231 1112 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 Or wor 5502 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-po 5503 df-so 5504 df-xp 5595 |
This theorem is referenced by: supsrlem 10867 |
Copyright terms: Public domain | W3C validator |