MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soirri Structured version   Visualization version   GIF version

Theorem soirri 6031
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 soi.1 . . . 4 𝑅 Or 𝑆
2 sonr 5526 . . . 4 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
31, 2mpan 687 . . 3 (𝐴𝑆 → ¬ 𝐴𝑅𝐴)
43adantl 482 . 2 ((𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
5 soi.2 . . . 4 𝑅 ⊆ (𝑆 × 𝑆)
65brel 5652 . . 3 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
76con3i 154 . 2 (¬ (𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
84, 7pm2.61i 182 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wcel 2106  wss 3887   class class class wbr 5074   Or wor 5502   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-po 5503  df-so 5504  df-xp 5595
This theorem is referenced by:  son2lpi  6033  nqpr  10770  ltapr  10801
  Copyright terms: Public domain W3C validator