![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soirri | Structured version Visualization version GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
soirri | ⊢ ¬ 𝐴𝑅𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.1 | . . . 4 ⊢ 𝑅 Or 𝑆 | |
2 | sonr 5611 | . . . 4 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ¬ 𝐴𝑅𝐴) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
5 | soi.2 | . . . 4 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
6 | 5 | brel 5741 | . . 3 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
7 | 6 | con3i 154 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2105 ⊆ wss 3948 class class class wbr 5148 Or wor 5587 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-po 5588 df-so 5589 df-xp 5682 |
This theorem is referenced by: son2lpi 6129 nqpr 11015 ltapr 11046 |
Copyright terms: Public domain | W3C validator |