| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soirri | Structured version Visualization version GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| soirri | ⊢ ¬ 𝐴𝑅𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | . . . 4 ⊢ 𝑅 Or 𝑆 | |
| 2 | sonr 5551 | . . . 4 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ¬ 𝐴𝑅𝐴) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
| 5 | soi.2 | . . . 4 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 6 | 5 | brel 5684 | . . 3 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
| 7 | 6 | con3i 154 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 Or wor 5526 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-po 5527 df-so 5528 df-xp 5625 |
| This theorem is referenced by: son2lpi 6079 nqpr 10912 ltapr 10943 |
| Copyright terms: Public domain | W3C validator |