MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soirri Structured version   Visualization version   GIF version

Theorem soirri 6145
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 soi.1 . . . 4 𝑅 Or 𝑆
2 sonr 5615 . . . 4 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
31, 2mpan 690 . . 3 (𝐴𝑆 → ¬ 𝐴𝑅𝐴)
43adantl 481 . 2 ((𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
5 soi.2 . . . 4 𝑅 ⊆ (𝑆 × 𝑆)
65brel 5749 . . 3 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
76con3i 154 . 2 (¬ (𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
84, 7pm2.61i 182 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2107  wss 3950   class class class wbr 5142   Or wor 5590   × cxp 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-po 5591  df-so 5592  df-xp 5690
This theorem is referenced by:  son2lpi  6147  nqpr  11055  ltapr  11086
  Copyright terms: Public domain W3C validator