Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > soirri | Structured version Visualization version GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
soirri | ⊢ ¬ 𝐴𝑅𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.1 | . . . 4 ⊢ 𝑅 Or 𝑆 | |
2 | sonr 5517 | . . . 4 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ¬ 𝐴𝑅𝐴) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
5 | soi.2 | . . . 4 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
6 | 5 | brel 5643 | . . 3 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
7 | 6 | con3i 154 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 Or wor 5493 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-xp 5586 |
This theorem is referenced by: son2lpi 6022 nqpr 10701 ltapr 10732 |
Copyright terms: Public domain | W3C validator |