| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soirri | Structured version Visualization version GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| soirri | ⊢ ¬ 𝐴𝑅𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | . . . 4 ⊢ 𝑅 Or 𝑆 | |
| 2 | sonr 5555 | . . . 4 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ¬ 𝐴𝑅𝐴) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
| 5 | soi.2 | . . . 4 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 6 | 5 | brel 5688 | . . 3 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
| 7 | 6 | con3i 154 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 Or wor 5530 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-po 5531 df-so 5532 df-xp 5629 |
| This theorem is referenced by: son2lpi 6081 nqpr 10927 ltapr 10958 |
| Copyright terms: Public domain | W3C validator |