MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soirri Structured version   Visualization version   GIF version

Theorem soirri 6102
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 soi.1 . . . 4 𝑅 Or 𝑆
2 sonr 5573 . . . 4 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
31, 2mpan 690 . . 3 (𝐴𝑆 → ¬ 𝐴𝑅𝐴)
43adantl 481 . 2 ((𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
5 soi.2 . . . 4 𝑅 ⊆ (𝑆 × 𝑆)
65brel 5706 . . 3 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
76con3i 154 . 2 (¬ (𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
84, 7pm2.61i 182 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2109  wss 3917   class class class wbr 5110   Or wor 5548   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-po 5549  df-so 5550  df-xp 5647
This theorem is referenced by:  son2lpi  6104  nqpr  10974  ltapr  11005
  Copyright terms: Public domain W3C validator