MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soirri Structured version   Visualization version   GIF version

Theorem soirri 6127
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 soi.1 . . . 4 𝑅 Or 𝑆
2 sonr 5611 . . . 4 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
31, 2mpan 687 . . 3 (𝐴𝑆 → ¬ 𝐴𝑅𝐴)
43adantl 481 . 2 ((𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
5 soi.2 . . . 4 𝑅 ⊆ (𝑆 × 𝑆)
65brel 5741 . . 3 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
76con3i 154 . 2 (¬ (𝐴𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
84, 7pm2.61i 182 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2105  wss 3948   class class class wbr 5148   Or wor 5587   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-po 5588  df-so 5589  df-xp 5682
This theorem is referenced by:  son2lpi  6129  nqpr  11015  ltapr  11046
  Copyright terms: Public domain W3C validator