Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sotr3 Structured version   Visualization version   GIF version

Theorem sotr3 33004
Description: Transitivity law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
sotr3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋𝑅𝑌 ∧ ¬ 𝑍𝑅𝑌) → 𝑋𝑅𝑍))

Proof of Theorem sotr3
StepHypRef Expression
1 simp3 1134 . . . . . . 7 ((𝑋𝐴𝑌𝐴𝑍𝐴) → 𝑍𝐴)
2 simp2 1133 . . . . . . 7 ((𝑋𝐴𝑌𝐴𝑍𝐴) → 𝑌𝐴)
31, 2jca 514 . . . . . 6 ((𝑋𝐴𝑌𝐴𝑍𝐴) → (𝑍𝐴𝑌𝐴))
4 sotric 5503 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑍𝐴𝑌𝐴)) → (𝑍𝑅𝑌 ↔ ¬ (𝑍 = 𝑌𝑌𝑅𝑍)))
53, 4sylan2 594 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍𝑅𝑌 ↔ ¬ (𝑍 = 𝑌𝑌𝑅𝑍)))
65con2bid 357 . . . 4 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑍 = 𝑌𝑌𝑅𝑍) ↔ ¬ 𝑍𝑅𝑌))
76adantr 483 . . 3 (((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑋𝑅𝑌) → ((𝑍 = 𝑌𝑌𝑅𝑍) ↔ ¬ 𝑍𝑅𝑌))
8 breq2 5072 . . . . . 6 (𝑍 = 𝑌 → (𝑋𝑅𝑍𝑋𝑅𝑌))
98biimprcd 252 . . . . 5 (𝑋𝑅𝑌 → (𝑍 = 𝑌𝑋𝑅𝑍))
109adantl 484 . . . 4 (((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑋𝑅𝑌) → (𝑍 = 𝑌𝑋𝑅𝑍))
11 sotr 5499 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋𝑅𝑌𝑌𝑅𝑍) → 𝑋𝑅𝑍))
1211expdimp 455 . . . 4 (((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑋𝑅𝑌) → (𝑌𝑅𝑍𝑋𝑅𝑍))
1310, 12jaod 855 . . 3 (((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑋𝑅𝑌) → ((𝑍 = 𝑌𝑌𝑅𝑍) → 𝑋𝑅𝑍))
147, 13sylbird 262 . 2 (((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑋𝑅𝑌) → (¬ 𝑍𝑅𝑌𝑋𝑅𝑍))
1514expimpd 456 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋𝑅𝑌 ∧ ¬ 𝑍𝑅𝑌) → 𝑋𝑅𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068   Or wor 5475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-po 5476  df-so 5477
This theorem is referenced by:  nosupbnd2  33218  sltletr  33237
  Copyright terms: Public domain W3C validator