Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sotr3 | Structured version Visualization version GIF version |
Description: Transitivity law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.) |
Ref | Expression |
---|---|
sotr3 | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → ((𝑋𝑅𝑌 ∧ ¬ 𝑍𝑅𝑌) → 𝑋𝑅𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → 𝑍 ∈ 𝐴) | |
2 | simp2 1137 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → 𝑌 ∈ 𝐴) | |
3 | 1, 2 | jca 512 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → (𝑍 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
4 | sotric 5571 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑍 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑍𝑅𝑌 ↔ ¬ (𝑍 = 𝑌 ∨ 𝑌𝑅𝑍))) | |
5 | 3, 4 | sylan2 593 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑍𝑅𝑌 ↔ ¬ (𝑍 = 𝑌 ∨ 𝑌𝑅𝑍))) |
6 | 5 | con2bid 354 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → ((𝑍 = 𝑌 ∨ 𝑌𝑅𝑍) ↔ ¬ 𝑍𝑅𝑌)) |
7 | 6 | adantr 481 | . . 3 ⊢ (((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) ∧ 𝑋𝑅𝑌) → ((𝑍 = 𝑌 ∨ 𝑌𝑅𝑍) ↔ ¬ 𝑍𝑅𝑌)) |
8 | breq2 5107 | . . . . . 6 ⊢ (𝑍 = 𝑌 → (𝑋𝑅𝑍 ↔ 𝑋𝑅𝑌)) | |
9 | 8 | biimprcd 249 | . . . . 5 ⊢ (𝑋𝑅𝑌 → (𝑍 = 𝑌 → 𝑋𝑅𝑍)) |
10 | 9 | adantl 482 | . . . 4 ⊢ (((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) ∧ 𝑋𝑅𝑌) → (𝑍 = 𝑌 → 𝑋𝑅𝑍)) |
11 | sotr 5567 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → ((𝑋𝑅𝑌 ∧ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) | |
12 | 11 | expdimp 453 | . . . 4 ⊢ (((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) ∧ 𝑋𝑅𝑌) → (𝑌𝑅𝑍 → 𝑋𝑅𝑍)) |
13 | 10, 12 | jaod 857 | . . 3 ⊢ (((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) ∧ 𝑋𝑅𝑌) → ((𝑍 = 𝑌 ∨ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) |
14 | 7, 13 | sylbird 259 | . 2 ⊢ (((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) ∧ 𝑋𝑅𝑌) → (¬ 𝑍𝑅𝑌 → 𝑋𝑅𝑍)) |
15 | 14 | expimpd 454 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → ((𝑋𝑅𝑌 ∧ ¬ 𝑍𝑅𝑌) → 𝑋𝑅𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5103 Or wor 5542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-br 5104 df-po 5543 df-so 5544 |
This theorem is referenced by: nosupbnd2 27016 noinfbnd1 27029 sltletr 27056 |
Copyright terms: Public domain | W3C validator |