MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1 Structured version   Visualization version   GIF version

Theorem noinfbnd1 27698
Description: Bounding law from above for the surreal infimum. Analagous to proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1 ((𝐵 No 𝐵𝑉𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑥,𝑈,𝑦   𝑥,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1
StepHypRef Expression
1 simpr1 1195 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
2 simpl 482 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3 nominmo 27668 . . . . . . . . 9 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
41, 3syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
5 reu5 3366 . . . . . . . 8 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
62, 4, 5sylanbrc 583 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
7 riotacl 7384 . . . . . . 7 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
86, 7syl 17 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
91, 8sseldd 3964 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No )
10 noextendlt 27638 . . . . 5 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
119, 10syl 17 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
12 simpr3 1197 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈𝐵)
13 nfv 1914 . . . . . . . . 9 𝑥(𝐵 No 𝐵𝑉𝑈𝐵)
14 nfcv 2899 . . . . . . . . . 10 𝑥𝐵
15 nfcv 2899 . . . . . . . . . . . 12 𝑥𝑦
16 nfcv 2899 . . . . . . . . . . . 12 𝑥 <s
17 nfriota1 7374 . . . . . . . . . . . 12 𝑥(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
1815, 16, 17nfbr 5171 . . . . . . . . . . 11 𝑥 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
1918nfn 1857 . . . . . . . . . 10 𝑥 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2014, 19nfralw 3295 . . . . . . . . 9 𝑥𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2113, 20nfim 1896 . . . . . . . 8 𝑥((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
22 simpl 482 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
23 rspe 3236 . . . . . . . . . . . . . 14 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2423adantr 480 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
25 simpr1 1195 . . . . . . . . . . . . . 14 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
2625, 3syl 17 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2724, 26, 5sylanbrc 583 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
28 riota1 7388 . . . . . . . . . . . 12 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
2927, 28syl 17 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3022, 29mpbid 232 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥)
31 simplr 768 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s 𝑥)
32 nfra1 3270 . . . . . . . . . . . . . 14 𝑦𝑦𝐵 ¬ 𝑦 <s 𝑥
33 nfcv 2899 . . . . . . . . . . . . . 14 𝑦𝐵
3432, 33nfriota 7379 . . . . . . . . . . . . 13 𝑦(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3534nfeq1 2915 . . . . . . . . . . . 12 𝑦(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥
36 breq2 5128 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ 𝑦 <s 𝑥))
3736notbid 318 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ¬ 𝑦 <s 𝑥))
3835, 37ralbid 3259 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
3938biimprd 248 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4030, 31, 39sylc 65 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
4140exp31 419 . . . . . . . 8 (𝑥𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
4221, 41rexlimi 3246 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4342imp 406 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
44 nfcv 2899 . . . . . . . . 9 𝑦𝑈
45 nfcv 2899 . . . . . . . . 9 𝑦 <s
4644, 45, 34nfbr 5171 . . . . . . . 8 𝑦 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
4746nfn 1857 . . . . . . 7 𝑦 ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
48 breq1 5127 . . . . . . . 8 (𝑦 = 𝑈 → (𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4948notbid 318 . . . . . . 7 (𝑦 = 𝑈 → (¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
5047, 49rspc 3594 . . . . . 6 (𝑈𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
5112, 43, 50sylc 65 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
52 nofun 27618 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → Fun (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
53 funrel 6558 . . . . . . . . 9 (Fun (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
549, 52, 533syl 18 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
55 sssucid 6439 . . . . . . . 8 dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
56 relssres 6014 . . . . . . . 8 ((Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
5754, 55, 56sylancl 586 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
5857breq2d 5136 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ↔ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
591, 12sseldd 3964 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈 No )
60 nodmon 27619 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
619, 60syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
62 onsucb 7816 . . . . . . . 8 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On ↔ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
6361, 62sylib 218 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
64 sltres 27631 . . . . . . 7 ((𝑈 No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6559, 9, 63, 64syl3anc 1373 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6658, 65sylbird 260 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6751, 66mtod 198 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
68 1oex 8495 . . . . . . . 8 1o ∈ V
6968prid1 4743 . . . . . . 7 1o ∈ {1o, 2o}
7069noextend 27635 . . . . . 6 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
719, 70syl 17 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
72 noreson 27629 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )
7359, 63, 72syl2anc 584 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )
74 sltso 27645 . . . . . 6 <s Or No
75 sotr3 5607 . . . . . 6 (( <s Or No ∧ (((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7674, 75mpan 690 . . . . 5 ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No ) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7771, 9, 73, 76syl3anc 1373 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7811, 67, 77mp2and 699 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
79 noinfbnd1.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
80 iftrue 4511 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8179, 80eqtrid 2783 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8281adantr 480 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8381dmeqd 5890 . . . . . 6 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8468dmsnop 6210 . . . . . . . 8 dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)}
8584uneq2i 4145 . . . . . . 7 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
86 dmun 5895 . . . . . . 7 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
87 df-suc 6363 . . . . . . 7 suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
8885, 86, 873eqtr4i 2769 . . . . . 6 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
8983, 88eqtrdi 2787 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
9089reseq2d 5971 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑈 ↾ dom 𝑇) = (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
9190adantr 480 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑈 ↾ dom 𝑇) = (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
9278, 82, 913brtr4d 5156 . 2 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 <s (𝑈 ↾ dom 𝑇))
93 simpl 482 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
94 simpr1 1195 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
95 simpr2 1196 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵𝑉)
96 simpr3 1197 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈𝐵)
9779noinfbnd1lem6 27697 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
9893, 94, 95, 96, 97syl121anc 1377 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 <s (𝑈 ↾ dom 𝑇))
9992, 98pm2.61ian 811 1 ((𝐵 No 𝐵𝑉𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  ∃!wreu 3362  ∃*wrmo 3363  cun 3929  wss 3931  ifcif 4505  {csn 4606  cop 4612   class class class wbr 5124  cmpt 5206   Or wor 5565  dom cdm 5659  cres 5661  Rel wrel 5664  Oncon0 6357  suc csuc 6359  cio 6487  Fun wfun 6530  cfv 6536  crio 7366  1oc1o 8478  2oc2o 8479   No csur 27608   <s cslt 27609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-riota 7367  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613
This theorem is referenced by:  noinfbnd2  27700  noetainflem3  27708
  Copyright terms: Public domain W3C validator