Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1 Structured version   Visualization version   GIF version

Theorem noinfbnd1 33932
Description: Bounding law from above for the surreal infimum. Analagous to proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1 ((𝐵 No 𝐵𝑉𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈   𝑥,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1
StepHypRef Expression
1 simpr1 1193 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
2 simpl 483 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3 nominmo 33902 . . . . . . . . 9 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
41, 3syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
5 reu5 3361 . . . . . . . 8 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
62, 4, 5sylanbrc 583 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
7 riotacl 7250 . . . . . . 7 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
86, 7syl 17 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
91, 8sseldd 3922 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No )
10 noextendlt 33872 . . . . 5 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
119, 10syl 17 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
12 simpr3 1195 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈𝐵)
13 nfv 1917 . . . . . . . . 9 𝑥(𝐵 No 𝐵𝑉𝑈𝐵)
14 nfcv 2907 . . . . . . . . . 10 𝑥𝐵
15 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑦
16 nfcv 2907 . . . . . . . . . . . 12 𝑥 <s
17 nfriota1 7239 . . . . . . . . . . . 12 𝑥(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
1815, 16, 17nfbr 5121 . . . . . . . . . . 11 𝑥 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
1918nfn 1860 . . . . . . . . . 10 𝑥 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2014, 19nfralw 3151 . . . . . . . . 9 𝑥𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2113, 20nfim 1899 . . . . . . . 8 𝑥((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
22 simpl 483 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
23 rspe 3237 . . . . . . . . . . . . . 14 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2423adantr 481 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
25 simpr1 1193 . . . . . . . . . . . . . 14 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
2625, 3syl 17 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2724, 26, 5sylanbrc 583 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
28 riota1 7254 . . . . . . . . . . . 12 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
2927, 28syl 17 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3022, 29mpbid 231 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥)
31 simplr 766 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s 𝑥)
32 nfra1 3144 . . . . . . . . . . . . . 14 𝑦𝑦𝐵 ¬ 𝑦 <s 𝑥
33 nfcv 2907 . . . . . . . . . . . . . 14 𝑦𝐵
3432, 33nfriota 7245 . . . . . . . . . . . . 13 𝑦(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3534nfeq1 2922 . . . . . . . . . . . 12 𝑦(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥
36 breq2 5078 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ 𝑦 <s 𝑥))
3736notbid 318 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ¬ 𝑦 <s 𝑥))
3835, 37ralbid 3161 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
3938biimprd 247 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4030, 31, 39sylc 65 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
4140exp31 420 . . . . . . . 8 (𝑥𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
4221, 41rexlimi 3248 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4342imp 407 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
44 nfcv 2907 . . . . . . . . 9 𝑦𝑈
45 nfcv 2907 . . . . . . . . 9 𝑦 <s
4644, 45, 34nfbr 5121 . . . . . . . 8 𝑦 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
4746nfn 1860 . . . . . . 7 𝑦 ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
48 breq1 5077 . . . . . . . 8 (𝑦 = 𝑈 → (𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4948notbid 318 . . . . . . 7 (𝑦 = 𝑈 → (¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
5047, 49rspc 3549 . . . . . 6 (𝑈𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
5112, 43, 50sylc 65 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
52 nofun 33852 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → Fun (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
53 funrel 6451 . . . . . . . . 9 (Fun (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
549, 52, 533syl 18 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
55 sssucid 6343 . . . . . . . 8 dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
56 relssres 5932 . . . . . . . 8 ((Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
5754, 55, 56sylancl 586 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
5857breq2d 5086 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ↔ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
591, 12sseldd 3922 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈 No )
60 nodmon 33853 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
619, 60syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
62 sucelon 7664 . . . . . . . 8 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On ↔ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
6361, 62sylib 217 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
64 sltres 33865 . . . . . . 7 ((𝑈 No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6559, 9, 63, 64syl3anc 1370 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6658, 65sylbird 259 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6751, 66mtod 197 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
68 1oex 8307 . . . . . . . 8 1o ∈ V
6968prid1 4698 . . . . . . 7 1o ∈ {1o, 2o}
7069noextend 33869 . . . . . 6 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
719, 70syl 17 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
72 noreson 33863 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )
7359, 63, 72syl2anc 584 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )
74 sltso 33879 . . . . . 6 <s Or No
75 sotr3 33733 . . . . . 6 (( <s Or No ∧ (((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7674, 75mpan 687 . . . . 5 ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No ) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7771, 9, 73, 76syl3anc 1370 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7811, 67, 77mp2and 696 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
79 noinfbnd1.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
80 iftrue 4465 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8179, 80eqtrid 2790 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8281adantr 481 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8381dmeqd 5814 . . . . . 6 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8468dmsnop 6119 . . . . . . . 8 dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)}
8584uneq2i 4094 . . . . . . 7 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
86 dmun 5819 . . . . . . 7 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
87 df-suc 6272 . . . . . . 7 suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
8885, 86, 873eqtr4i 2776 . . . . . 6 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
8983, 88eqtrdi 2794 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
9089reseq2d 5891 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑈 ↾ dom 𝑇) = (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
9190adantr 481 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑈 ↾ dom 𝑇) = (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
9278, 82, 913brtr4d 5106 . 2 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 <s (𝑈 ↾ dom 𝑇))
93 simpl 483 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
94 simpr1 1193 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
95 simpr2 1194 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵𝑉)
96 simpr3 1195 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈𝐵)
9779noinfbnd1lem6 33931 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
9893, 94, 95, 96, 97syl121anc 1374 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 <s (𝑈 ↾ dom 𝑇))
9992, 98pm2.61ian 809 1 ((𝐵 No 𝐵𝑉𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067  cun 3885  wss 3887  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   Or wor 5502  dom cdm 5589  cres 5591  Rel wrel 5594  Oncon0 6266  suc csuc 6268  cio 6389  Fun wfun 6427  cfv 6433  crio 7231  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  noinfbnd2  33934  noetainflem3  33942
  Copyright terms: Public domain W3C validator