Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1 Structured version   Visualization version   GIF version

Theorem noinfbnd1 33859
Description: Bounding law from above for the surreal infimum. Analagous to proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1 ((𝐵 No 𝐵𝑉𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈   𝑥,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1
StepHypRef Expression
1 simpr1 1192 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
2 simpl 482 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3 nominmo 33829 . . . . . . . . 9 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
41, 3syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
5 reu5 3351 . . . . . . . 8 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
62, 4, 5sylanbrc 582 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
7 riotacl 7230 . . . . . . 7 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
86, 7syl 17 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
91, 8sseldd 3918 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No )
10 noextendlt 33799 . . . . 5 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
119, 10syl 17 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
12 simpr3 1194 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈𝐵)
13 nfv 1918 . . . . . . . . 9 𝑥(𝐵 No 𝐵𝑉𝑈𝐵)
14 nfcv 2906 . . . . . . . . . 10 𝑥𝐵
15 nfcv 2906 . . . . . . . . . . . 12 𝑥𝑦
16 nfcv 2906 . . . . . . . . . . . 12 𝑥 <s
17 nfriota1 7219 . . . . . . . . . . . 12 𝑥(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
1815, 16, 17nfbr 5117 . . . . . . . . . . 11 𝑥 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
1918nfn 1861 . . . . . . . . . 10 𝑥 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2014, 19nfralw 3149 . . . . . . . . 9 𝑥𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2113, 20nfim 1900 . . . . . . . 8 𝑥((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
22 simpl 482 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
23 rspe 3232 . . . . . . . . . . . . . 14 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2423adantr 480 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
25 simpr1 1192 . . . . . . . . . . . . . 14 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
2625, 3syl 17 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2724, 26, 5sylanbrc 582 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
28 riota1 7234 . . . . . . . . . . . 12 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
2927, 28syl 17 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3022, 29mpbid 231 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥)
31 simplr 765 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s 𝑥)
32 nfra1 3142 . . . . . . . . . . . . . 14 𝑦𝑦𝐵 ¬ 𝑦 <s 𝑥
33 nfcv 2906 . . . . . . . . . . . . . 14 𝑦𝐵
3432, 33nfriota 7225 . . . . . . . . . . . . 13 𝑦(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3534nfeq1 2921 . . . . . . . . . . . 12 𝑦(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥
36 breq2 5074 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ 𝑦 <s 𝑥))
3736notbid 317 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ¬ 𝑦 <s 𝑥))
3835, 37ralbid 3158 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
3938biimprd 247 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4030, 31, 39sylc 65 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
4140exp31 419 . . . . . . . 8 (𝑥𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
4221, 41rexlimi 3243 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝐵 No 𝐵𝑉𝑈𝐵) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4342imp 406 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
44 nfcv 2906 . . . . . . . . 9 𝑦𝑈
45 nfcv 2906 . . . . . . . . 9 𝑦 <s
4644, 45, 34nfbr 5117 . . . . . . . 8 𝑦 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
4746nfn 1861 . . . . . . 7 𝑦 ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
48 breq1 5073 . . . . . . . 8 (𝑦 = 𝑈 → (𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
4948notbid 317 . . . . . . 7 (𝑦 = 𝑈 → (¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
5047, 49rspc 3539 . . . . . 6 (𝑈𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
5112, 43, 50sylc 65 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
52 nofun 33779 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → Fun (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
53 funrel 6435 . . . . . . . . 9 (Fun (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
549, 52, 533syl 18 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
55 sssucid 6328 . . . . . . . 8 dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
56 relssres 5921 . . . . . . . 8 ((Rel (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
5754, 55, 56sylancl 585 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
5857breq2d 5082 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ↔ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
591, 12sseldd 3918 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈 No )
60 nodmon 33780 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
619, 60syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
62 sucelon 7639 . . . . . . . 8 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On ↔ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
6361, 62sylib 217 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On)
64 sltres 33792 . . . . . . 7 ((𝑈 No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6559, 9, 63, 64syl3anc 1369 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6658, 65sylbird 259 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) → 𝑈 <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
6751, 66mtod 197 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
68 1oex 8280 . . . . . . . 8 1o ∈ V
6968prid1 4695 . . . . . . 7 1o ∈ {1o, 2o}
7069noextend 33796 . . . . . 6 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
719, 70syl 17 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
72 noreson 33790 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )
7359, 63, 72syl2anc 583 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )
74 sltso 33806 . . . . . 6 <s Or No
75 sotr3 33639 . . . . . 6 (( <s Or No ∧ (((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No )) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7674, 75mpan 686 . . . . 5 ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No ∧ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ No ) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7771, 9, 73, 76syl3anc 1369 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ¬ (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) <s (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))))
7811, 67, 77mp2and 695 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) <s (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
79 noinfbnd1.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
80 iftrue 4462 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8179, 80syl5eq 2791 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8281adantr 480 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8381dmeqd 5803 . . . . . 6 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
8468dmsnop 6108 . . . . . . . 8 dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)}
8584uneq2i 4090 . . . . . . 7 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
86 dmun 5808 . . . . . . 7 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
87 df-suc 6257 . . . . . . 7 suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
8885, 86, 873eqtr4i 2776 . . . . . 6 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
8983, 88eqtrdi 2795 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
9089reseq2d 5880 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑈 ↾ dom 𝑇) = (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
9190adantr 480 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → (𝑈 ↾ dom 𝑇) = (𝑈 ↾ suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)))
9278, 82, 913brtr4d 5102 . 2 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 <s (𝑈 ↾ dom 𝑇))
93 simpl 482 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
94 simpr1 1192 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵 No )
95 simpr2 1193 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝐵𝑉)
96 simpr3 1194 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑈𝐵)
9779noinfbnd1lem6 33858 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
9893, 94, 95, 96, 97syl121anc 1373 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉𝑈𝐵)) → 𝑇 <s (𝑈 ↾ dom 𝑇))
9992, 98pm2.61ian 808 1 ((𝐵 No 𝐵𝑉𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066  cun 3881  wss 3883  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   Or wor 5493  dom cdm 5580  cres 5582  Rel wrel 5585  Oncon0 6251  suc csuc 6253  cio 6374  Fun wfun 6412  cfv 6418  crio 7211  1oc1o 8260  2oc2o 8261   No csur 33770   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775
This theorem is referenced by:  noinfbnd2  33861  noetainflem3  33869
  Copyright terms: Public domain W3C validator