MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltletr Structured version   Visualization version   GIF version

Theorem sltletr 27816
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sltletr ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 ≤s 𝐶) → 𝐴 <s 𝐶))

Proof of Theorem sltletr
StepHypRef Expression
1 slenlt 27812 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
213adant1 1129 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
32anbi2d 630 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 ≤s 𝐶) ↔ (𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵)))
4 sltso 27736 . . 3 <s Or No
5 sotr3 5637 . . 3 (( <s Or No ∧ (𝐴 No 𝐵 No 𝐶 No )) → ((𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → 𝐴 <s 𝐶))
64, 5mpan 690 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → 𝐴 <s 𝐶))
73, 6sylbid 240 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 ≤s 𝐶) → 𝐴 <s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2106   class class class wbr 5148   Or wor 5596   No csur 27699   <s cslt 27700   ≤s csle 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-sle 27805
This theorem is referenced by:  sletr  27818  sltletrd  27820
  Copyright terms: Public domain W3C validator