MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltletr Structured version   Visualization version   GIF version

Theorem sltletr 27644
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sltletr ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 ≤s 𝐶) → 𝐴 <s 𝐶))

Proof of Theorem sltletr
StepHypRef Expression
1 slenlt 27640 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
213adant1 1130 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
32anbi2d 630 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 ≤s 𝐶) ↔ (𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵)))
4 sltso 27564 . . 3 <s Or No
5 sotr3 5580 . . 3 (( <s Or No ∧ (𝐴 No 𝐵 No 𝐶 No )) → ((𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → 𝐴 <s 𝐶))
64, 5mpan 690 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → 𝐴 <s 𝐶))
73, 6sylbid 240 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 ≤s 𝐶) → 𝐴 <s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5102   Or wor 5538   No csur 27527   <s cslt 27528   ≤s csle 27632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531  df-sle 27633
This theorem is referenced by:  sletr  27646  sltletrd  27648
  Copyright terms: Public domain W3C validator