MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotric Structured version   Visualization version   GIF version

Theorem sotric 5531
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
sotric ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotric
StepHypRef Expression
1 sonr 5526 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
2 breq2 5078 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
32notbid 318 . . . . . 6 (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶))
41, 3syl5ibcom 244 . . . . 5 ((𝑅 Or 𝐴𝐵𝐴) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶))
54adantrr 714 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶))
6 so2nr 5529 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
7 imnan 400 . . . . . 6 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
86, 7sylibr 233 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
98con2d 134 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶))
105, 9jaod 856 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 = 𝐶𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶))
11 solin 5528 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
12 3orass 1089 . . . . 5 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1311, 12sylib 217 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1413ord 861 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐵𝑅𝐶 → (𝐵 = 𝐶𝐶𝑅𝐵)))
1510, 14impbid 211 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 = 𝐶𝐶𝑅𝐵) ↔ ¬ 𝐵𝑅𝐶))
1615con2bid 355 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2106   class class class wbr 5074   Or wor 5502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-po 5503  df-so 5504
This theorem is referenced by:  soasym  5534  sotr2  5535  sotri2  6034  sotri3  6035  somin1  6038  somincom  6039  soisores  7198  soisoi  7199  fimaxg  9061  suplub2  9220  supgtoreq  9229  fiming  9257  infsupprpr  9263  ordtypelem7  9283  fpwwe2  10399  indpi  10663  nqereu  10685  ltsonq  10725  prub  10750  ltapr  10801  suplem2pr  10809  ltsosr  10850  axpre-lttri  10921  sotr3  33733  noetasuplem4  33939  noetainflem4  33943  sleloe  33957  prproropf1olem4  44958
  Copyright terms: Public domain W3C validator