| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sotric | Structured version Visualization version GIF version | ||
| Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.) |
| Ref | Expression |
|---|---|
| sotric | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr 5546 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 2 | breq2 5093 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
| 3 | 2 | notbid 318 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | syl5ibcom 245 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶)) |
| 5 | 4 | adantrr 717 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶)) |
| 6 | so2nr 5550 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
| 7 | imnan 399 | . . . . . 6 ⊢ ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵)) |
| 9 | 8 | con2d 134 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶)) |
| 10 | 5, 9 | jaod 859 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶)) |
| 11 | solin 5549 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
| 12 | 3orass 1089 | . . . . 5 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
| 13 | 11, 12 | sylib 218 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 14 | 13 | ord 864 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐵𝑅𝐶 → (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 15 | 10, 14 | impbid 212 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ ¬ 𝐵𝑅𝐶)) |
| 16 | 15 | con2bid 354 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 Or wor 5521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-po 5522 df-so 5523 |
| This theorem is referenced by: soasym 5555 sotr2 5556 sotr3 5563 sotri2 6075 sotri3 6076 somin1 6079 somincom 6080 soisores 7261 soisoi 7262 fimaxg 9171 suplub2 9345 supgtoreq 9355 fiming 9384 infsupprpr 9390 ordtypelem7 9410 fpwwe2 10534 indpi 10798 nqereu 10820 ltsonq 10860 prub 10885 ltapr 10936 suplem2pr 10944 ltsosr 10985 axpre-lttri 11056 noetasuplem4 27675 noetainflem4 27679 sleloe 27693 prproropf1olem4 47605 |
| Copyright terms: Public domain | W3C validator |