![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotric | Structured version Visualization version GIF version |
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.) |
Ref | Expression |
---|---|
sotric | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sonr 5569 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | breq2 5110 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
3 | 2 | notbid 318 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶)) |
4 | 1, 3 | syl5ibcom 244 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶)) |
5 | 4 | adantrr 716 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶)) |
6 | so2nr 5572 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
7 | imnan 401 | . . . . . 6 ⊢ ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
8 | 6, 7 | sylibr 233 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵)) |
9 | 8 | con2d 134 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶)) |
10 | 5, 9 | jaod 858 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶)) |
11 | solin 5571 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
12 | 3orass 1091 | . . . . 5 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
14 | 13 | ord 863 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐵𝑅𝐶 → (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
15 | 10, 14 | impbid 211 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ ¬ 𝐵𝑅𝐶)) |
16 | 15 | con2bid 355 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 Or wor 5545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-po 5546 df-so 5547 |
This theorem is referenced by: soasym 5577 sotr2 5578 sotr3 5585 sotri2 6084 sotri3 6085 somin1 6088 somincom 6089 soisores 7273 soisoi 7274 fimaxg 9235 suplub2 9398 supgtoreq 9407 fiming 9435 infsupprpr 9441 ordtypelem7 9461 fpwwe2 10580 indpi 10844 nqereu 10866 ltsonq 10906 prub 10931 ltapr 10982 suplem2pr 10990 ltsosr 11031 axpre-lttri 11102 noetasuplem4 27087 noetainflem4 27091 sleloe 27105 prproropf1olem4 45705 |
Copyright terms: Public domain | W3C validator |