MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotric Structured version   Visualization version   GIF version

Theorem sotric 5557
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
sotric ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotric
StepHypRef Expression
1 sonr 5551 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
2 breq2 5096 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
32notbid 318 . . . . . 6 (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶))
41, 3syl5ibcom 245 . . . . 5 ((𝑅 Or 𝐴𝐵𝐴) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶))
54adantrr 717 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶))
6 so2nr 5555 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
7 imnan 399 . . . . . 6 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
86, 7sylibr 234 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
98con2d 134 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶))
105, 9jaod 859 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 = 𝐶𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶))
11 solin 5554 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
12 3orass 1089 . . . . 5 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1311, 12sylib 218 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1413ord 864 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐵𝑅𝐶 → (𝐵 = 𝐶𝐶𝑅𝐵)))
1510, 14impbid 212 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 = 𝐶𝐶𝑅𝐵) ↔ ¬ 𝐵𝑅𝐶))
1615con2bid 354 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109   class class class wbr 5092   Or wor 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-po 5527  df-so 5528
This theorem is referenced by:  soasym  5560  sotr2  5561  sotr3  5568  sotri2  6078  sotri3  6079  somin1  6082  somincom  6083  soisores  7264  soisoi  7265  fimaxg  9176  suplub2  9351  supgtoreq  9361  fiming  9390  infsupprpr  9396  ordtypelem7  9416  fpwwe2  10537  indpi  10801  nqereu  10823  ltsonq  10863  prub  10888  ltapr  10939  suplem2pr  10947  ltsosr  10988  axpre-lttri  11059  noetasuplem4  27646  noetainflem4  27650  sleloe  27664  prproropf1olem4  47510
  Copyright terms: Public domain W3C validator