![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotric | Structured version Visualization version GIF version |
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.) |
Ref | Expression |
---|---|
sotric | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sonr 5632 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | breq2 5170 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
3 | 2 | notbid 318 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶)) |
4 | 1, 3 | syl5ibcom 245 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶)) |
5 | 4 | adantrr 716 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶)) |
6 | so2nr 5635 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
7 | imnan 399 | . . . . . 6 ⊢ ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵)) |
9 | 8 | con2d 134 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶)) |
10 | 5, 9 | jaod 858 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶)) |
11 | solin 5634 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
12 | 3orass 1090 | . . . . 5 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
13 | 11, 12 | sylib 218 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
14 | 13 | ord 863 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐵𝑅𝐶 → (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
15 | 10, 14 | impbid 212 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ ¬ 𝐵𝑅𝐶)) |
16 | 15 | con2bid 354 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 Or wor 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-po 5607 df-so 5608 |
This theorem is referenced by: soasym 5640 sotr2 5641 sotr3 5648 sotri2 6161 sotri3 6162 somin1 6165 somincom 6166 soisores 7363 soisoi 7364 fimaxg 9351 suplub2 9530 supgtoreq 9539 fiming 9567 infsupprpr 9573 ordtypelem7 9593 fpwwe2 10712 indpi 10976 nqereu 10998 ltsonq 11038 prub 11063 ltapr 11114 suplem2pr 11122 ltsosr 11163 axpre-lttri 11234 noetasuplem4 27799 noetainflem4 27803 sleloe 27817 prproropf1olem4 47380 |
Copyright terms: Public domain | W3C validator |