MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotric Structured version   Visualization version   GIF version

Theorem sotric 5522
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
sotric ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotric
StepHypRef Expression
1 sonr 5517 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
2 breq2 5074 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
32notbid 317 . . . . . 6 (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶))
41, 3syl5ibcom 244 . . . . 5 ((𝑅 Or 𝐴𝐵𝐴) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶))
54adantrr 713 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶))
6 so2nr 5520 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
7 imnan 399 . . . . . 6 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
86, 7sylibr 233 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
98con2d 134 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶))
105, 9jaod 855 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 = 𝐶𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶))
11 solin 5519 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
12 3orass 1088 . . . . 5 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1311, 12sylib 217 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1413ord 860 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐵𝑅𝐶 → (𝐵 = 𝐶𝐶𝑅𝐵)))
1510, 14impbid 211 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 = 𝐶𝐶𝑅𝐵) ↔ ¬ 𝐵𝑅𝐶))
1615con2bid 354 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108   class class class wbr 5070   Or wor 5493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494  df-so 5495
This theorem is referenced by:  soasym  5525  sotr2  5526  sotri2  6023  sotri3  6024  somin1  6027  somincom  6028  soisores  7178  soisoi  7179  fimaxg  8991  suplub2  9150  supgtoreq  9159  fiming  9187  infsupprpr  9193  ordtypelem7  9213  fpwwe2  10330  indpi  10594  nqereu  10616  ltsonq  10656  prub  10681  ltapr  10732  suplem2pr  10740  ltsosr  10781  axpre-lttri  10852  sotr3  33639  noetasuplem4  33866  noetainflem4  33870  sleloe  33884  prproropf1olem4  44846
  Copyright terms: Public domain W3C validator