Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pthonv | Structured version Visualization version GIF version |
Description: For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 21-Jan-2021.) |
Ref | Expression |
---|---|
0pthon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0pthonv | ⊢ (𝑁 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5229 | . . 3 ⊢ ∅ ∈ V | |
2 | snex 5352 | . . 3 ⊢ {〈0, 𝑁〉} ∈ V | |
3 | 1, 2 | pm3.2i 471 | . 2 ⊢ (∅ ∈ V ∧ {〈0, 𝑁〉} ∈ V) |
4 | 0pthon.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | 0pthon1 28500 | . 2 ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉}) |
6 | breq12 5078 | . . 3 ⊢ ((𝑓 = ∅ ∧ 𝑝 = {〈0, 𝑁〉}) → (𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝 ↔ ∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉})) | |
7 | 6 | spc2egv 3535 | . 2 ⊢ ((∅ ∈ V ∧ {〈0, 𝑁〉} ∈ V) → (∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉} → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
8 | 3, 5, 7 | mpsyl 68 | 1 ⊢ (𝑁 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3429 ∅c0 4256 {csn 4561 〈cop 4567 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 0cc0 10881 Vtxcvtx 27376 PathsOncpthson 28090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-pm 8605 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-fzo 13393 df-hash 14055 df-word 14228 df-wlks 27976 df-wlkson 27977 df-trls 28069 df-trlson 28070 df-pths 28092 df-pthson 28094 |
This theorem is referenced by: 1pthon2v 28525 dfconngr1 28560 1conngr 28566 |
Copyright terms: Public domain | W3C validator |