Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
2 | | 0zd 12261 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 0 ∈ ℤ) |
3 | | dvnprodlem1.j |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
4 | 3 | nn0zd 12353 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ ℤ) |
5 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℤ) |
6 | | dvnprodlem1.c |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
7 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m (𝑅 ∪ {𝑍}))) |
8 | | rabeq 3408 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
(𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
10 | | sumeq1 15328 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡)) |
11 | 10 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛)) |
12 | 11 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
13 | 9, 12 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
14 | 13 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
15 | | dvnprodlem1.rzt |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ⊆ 𝑇) |
16 | | dvnprodlem1.t |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑇 ∈ Fin) |
17 | | ssexg 5242 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∪ {𝑍}) ⊆ 𝑇 ∧ 𝑇 ∈ Fin) → (𝑅 ∪ {𝑍}) ∈ V) |
18 | 15, 16, 17 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ V) |
19 | | elpwg 4533 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∪ {𝑍}) ∈ V → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
21 | 15, 20 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇) |
22 | | nn0ex 12169 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
ℕ0 ∈ V |
23 | 22 | mptex 7081 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
(𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V) |
25 | 6, 14, 21, 24 | fvmptd3 6880 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐶‘(𝑅 ∪ {𝑍})) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
26 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝐽 → (0...𝑛) = (0...𝐽)) |
27 | 26 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝐽 → ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) = ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
28 | | rabeq 3408 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((0...𝑛)
↑m (𝑅 ∪
{𝑍})) = ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
30 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝐽 → (Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
31 | 30 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
32 | 29, 31 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 𝐽) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
34 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((0...𝐽)
↑m (𝑅 ∪
{𝑍})) ∈
V |
35 | 34 | rabex 5251 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V |
36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V) |
37 | 25, 33, 3, 36 | fvmptd 6864 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
38 | | ssrab2 4009 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) |
39 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
40 | 37, 39 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
41 | 40 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
42 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
43 | 41, 42 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
44 | | elmapi 8595 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
46 | | dvnprodlem1.z |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
47 | | snidg 4592 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑍 ∈ 𝑇 → 𝑍 ∈ {𝑍}) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
49 | | elun2 4107 |
. . . . . . . . . . . . . . . 16
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
52 | 45, 51 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝐽)) |
53 | 52 | elfzelzd 13186 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℤ) |
54 | 5, 53 | zsubcld 12360 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ ℤ) |
55 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ≤ 𝐽) |
56 | 52, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ≤ 𝐽) |
57 | 5 | zred 12355 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℝ) |
58 | 53 | zred 12355 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℝ) |
59 | 57, 58 | subge0d 11495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0 ≤ (𝐽 − (𝑐‘𝑍)) ↔ (𝑐‘𝑍) ≤ 𝐽)) |
60 | 56, 59 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 0 ≤ (𝐽 − (𝑐‘𝑍))) |
61 | | elfzle1 13188 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑍)) |
62 | 52, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 0 ≤ (𝑐‘𝑍)) |
63 | 57, 58 | subge02d 11497 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0 ≤ (𝑐‘𝑍) ↔ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽)) |
64 | 62, 63 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ≤ 𝐽) |
65 | 2, 5, 54, 60, 64 | elfzd 13176 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
66 | | elmapfn 8611 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
67 | 43, 66 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
68 | | ssun1 4102 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑅 ⊆ (𝑅 ∪ {𝑍}) |
69 | 68 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ⊆ (𝑅 ∪ {𝑍})) |
70 | | fnssres 6539 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 Fn (𝑅 ∪ {𝑍}) ∧ 𝑅 ⊆ (𝑅 ∪ {𝑍})) → (𝑐 ↾ 𝑅) Fn 𝑅) |
71 | 67, 69, 70 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) Fn 𝑅) |
72 | | nfv 1918 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡𝜑 |
73 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡𝑐 |
74 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡𝒫 𝑇 |
75 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡ℕ0 |
76 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑡𝑠 |
77 | 76 | nfsum1 15329 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) |
78 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡𝑛 |
79 | 77, 78 | nfeq 2919 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 |
80 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡((0...𝑛) ↑m 𝑠) |
81 | 79, 80 | nfrabw 3311 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡{𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} |
82 | 75, 81 | nfmpt 5177 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
83 | 74, 82 | nfmpt 5177 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑡(𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
84 | 6, 83 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡𝐶 |
85 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡(𝑅 ∪ {𝑍}) |
86 | 84, 85 | nffv 6766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(𝐶‘(𝑅 ∪ {𝑍})) |
87 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝐽 |
88 | 86, 87 | nffv 6766 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) |
89 | 73, 88 | nfel 2920 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) |
90 | 72, 89 | nfan 1903 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
91 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
92 | 91 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
93 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 0 ∈ ℤ) |
94 | 54 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝐽 − (𝑐‘𝑍)) ∈ ℤ) |
95 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
96 | 69 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
97 | 95, 96 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝐽)) |
98 | 97 | elfzelzd 13186 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ ℤ) |
99 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐‘𝑡) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑡)) |
100 | 97, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 0 ≤ (𝑐‘𝑡)) |
101 | 15 | unssad 4117 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑅 ⊆ 𝑇) |
102 | | ssfi 8918 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑇 ∈ Fin ∧ 𝑅 ⊆ 𝑇) → 𝑅 ∈ Fin) |
103 | 16, 101, 102 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑅 ∈ Fin) |
104 | 103 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑅 ∈ Fin) |
105 | | fzssz 13187 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0...𝐽) ⊆
ℤ |
106 | | zssre 12256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ℤ
⊆ ℝ |
107 | 105, 106 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0...𝐽) ⊆
ℝ |
108 | 107 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (0...𝐽) ⊆ ℝ) |
109 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
110 | 69 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → 𝑟 ∈ (𝑅 ∪ {𝑍})) |
111 | 109, 110 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ (0...𝐽)) |
112 | 108, 111 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ ℝ) |
113 | 112 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ ℝ) |
114 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐‘𝑟) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑟)) |
115 | 111, 114 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → 0 ≤ (𝑐‘𝑟)) |
116 | 115 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) ∧ 𝑟 ∈ 𝑅) → 0 ≤ (𝑐‘𝑟)) |
117 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟 = 𝑡 → (𝑐‘𝑟) = (𝑐‘𝑡)) |
118 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑅) |
119 | 104, 113,
116, 117, 118 | fsumge1 15437 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ≤ Σ𝑟 ∈ 𝑅 (𝑐‘𝑟)) |
120 | 103 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
121 | 112 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ ℂ) |
122 | 120, 121 | fsumcl 15373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) ∈ ℂ) |
123 | 58 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℂ) |
124 | 122, 123 | pncand 11263 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) − (𝑐‘𝑍)) = Σ𝑟 ∈ 𝑅 (𝑐‘𝑟)) |
125 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑟(𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
126 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑟(𝑐‘𝑍) |
127 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
128 | | dvnprodlem1.zr |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑅) |
129 | 128 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
130 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑟 = 𝑍 → (𝑐‘𝑟) = (𝑐‘𝑍)) |
131 | 125, 126,
120, 127, 129, 121, 130, 123 | fsumsplitsn 15384 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟) = (Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍))) |
132 | 131 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) = Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟)) |
133 | 117 | cbvsumv 15336 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Σ𝑟 ∈
(𝑅 ∪ {𝑍})(𝑐‘𝑟) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) |
134 | 133 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡)) |
135 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
136 | 42, 135 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
137 | | rabid 3304 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ↔ (𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
138 | 136, 137 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
139 | 138 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽) |
140 | 134, 139 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟) = 𝐽) |
141 | 132, 140 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) = 𝐽) |
142 | 141 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) − (𝑐‘𝑍)) = (𝐽 − (𝑐‘𝑍))) |
143 | 124, 142 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) = (𝐽 − (𝑐‘𝑍))) |
144 | 143 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) = (𝐽 − (𝑐‘𝑍))) |
145 | 119, 144 | breqtrd 5096 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ≤ (𝐽 − (𝑐‘𝑍))) |
146 | 93, 94, 98, 100, 145 | elfzd 13176 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍)))) |
147 | 92, 146 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍)))) |
148 | 147 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍))))) |
149 | 90, 148 | ralrimi 3139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍)))) |
150 | 71, 149 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅) Fn 𝑅 ∧ ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍))))) |
151 | | ffnfv 6974 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ↾ 𝑅):𝑅⟶(0...(𝐽 − (𝑐‘𝑍))) ↔ ((𝑐 ↾ 𝑅) Fn 𝑅 ∧ ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍))))) |
152 | 150, 151 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅):𝑅⟶(0...(𝐽 − (𝑐‘𝑍)))) |
153 | | ovexd 7290 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...(𝐽 − (𝑐‘𝑍))) ∈ V) |
154 | 16, 101 | ssexd 5243 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ V) |
155 | 154 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ V) |
156 | 153, 155 | elmapd 8587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ↔ (𝑐 ↾ 𝑅):𝑅⟶(0...(𝐽 − (𝑐‘𝑍))))) |
157 | 152, 156 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅)) |
158 | 91 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡))) |
159 | 90, 158 | ralrimi 3139 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
160 | 159 | sumeq2d 15342 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡)) |
161 | 117 | cbvsumv 15336 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑟 ∈
𝑅 (𝑐‘𝑟) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) |
162 | 161 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑡 ∈
𝑅 (𝑐‘𝑡) = Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) |
163 | 162 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = Σ𝑟 ∈ 𝑅 (𝑐‘𝑟)) |
164 | 143 | idi 1 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) = (𝐽 − (𝑐‘𝑍))) |
165 | 160, 163,
164 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍))) |
166 | 157, 165 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∧ Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
167 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = (𝑐 ↾ 𝑅) → 𝑅 = 𝑅) |
168 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = (𝑐 ↾ 𝑅) ∧ 𝑡 ∈ 𝑅) → 𝑒 = (𝑐 ↾ 𝑅)) |
169 | 168 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = (𝑐 ↾ 𝑅) ∧ 𝑡 ∈ 𝑅) → (𝑒‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
170 | 167, 169 | sumeq12rdv 15347 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = (𝑐 ↾ 𝑅) → Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡)) |
171 | 170 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (𝑐 ↾ 𝑅) → (Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍)) ↔ Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
172 | 171 | elrab 3617 |
. . . . . . . . . . . 12
⊢ ((𝑐 ↾ 𝑅) ∈ {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} ↔ ((𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∧ Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
173 | 166, 172 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
174 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 𝑅 → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m 𝑅)) |
175 | | rabeq 3408 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
𝑅) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
176 | 174, 175 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
177 | | sumeq1 15328 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑅 → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡)) |
178 | 177 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 𝑅 → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛)) |
179 | 178 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
180 | 176, 179 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
181 | 180 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑅 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
182 | | elpwg 4533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ V → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
183 | 154, 182 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
184 | 101, 183 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ 𝒫 𝑇) |
185 | 22 | mptex 7081 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V |
186 | 185 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V) |
187 | 6, 181, 184, 186 | fvmptd3 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
188 | 187 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
189 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) |
190 | 189 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → ((0...𝑛) ↑m 𝑅) = ((0...𝑚) ↑m 𝑅)) |
191 | | rabeq 3408 |
. . . . . . . . . . . . . . . . . 18
⊢
(((0...𝑛)
↑m 𝑅) =
((0...𝑚) ↑m
𝑅) → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
192 | 190, 191 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
193 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚)) |
194 | 193 | rabbidv 3404 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚}) |
195 | 192, 194 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚}) |
196 | 195 | cbvmptv 5183 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚}) |
197 | 196 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚})) |
198 | 188, 197 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐶‘𝑅) = (𝑚 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚})) |
199 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑒 → (𝑐‘𝑡) = (𝑒‘𝑡)) |
200 | 199 | sumeq2sdv 15344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑒 → Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑒‘𝑡)) |
201 | 200 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚 ↔ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚)) |
202 | 201 | cbvrabv 3416 |
. . . . . . . . . . . . . . . 16
⊢ {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} |
203 | 202 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚}) |
204 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → (0...𝑚) = (0...(𝐽 − (𝑐‘𝑍)))) |
205 | 204 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → ((0...𝑚) ↑m 𝑅) = ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅)) |
206 | | rabeq 3408 |
. . . . . . . . . . . . . . . 16
⊢
(((0...𝑚)
↑m 𝑅) =
((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) → {𝑒 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚}) |
207 | 205, 206 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑒 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚}) |
208 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → (Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚 ↔ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
209 | 208 | rabbidv 3404 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
210 | 203, 207,
209 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
211 | 210 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑚 = (𝐽 − (𝑐‘𝑍))) → {𝑐 ∈ ((0...𝑚) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
212 | 54, 60 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽 − (𝑐‘𝑍)) ∈ ℤ ∧ 0 ≤ (𝐽 − (𝑐‘𝑍)))) |
213 | | elnn0z 12262 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ ℕ0 ↔ ((𝐽 − (𝑐‘𝑍)) ∈ ℤ ∧ 0 ≤ (𝐽 − (𝑐‘𝑍)))) |
214 | 212, 213 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
215 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢
((0...(𝐽 −
(𝑐‘𝑍))) ↑m 𝑅) ∈ V |
216 | 215 | rabex 5251 |
. . . . . . . . . . . . . 14
⊢ {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} ∈ V |
217 | 216 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} ∈ V) |
218 | 198, 211,
214, 217 | fvmptd 6864 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))) = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
219 | 218 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} = ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
220 | 173, 219 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
221 | 65, 220 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) |
222 | 1, 221 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))))) |
223 | | ovexd 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ V) |
224 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
225 | 224 | resex 5928 |
. . . . . . . . . 10
⊢ (𝑐 ↾ 𝑅) ∈ V |
226 | 225 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ V) |
227 | | opeq12 4803 |
. . . . . . . . . . . 12
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → 〈𝑘, 𝑑〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
228 | 227 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → (〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ↔ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
229 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐽 − (𝑐‘𝑍)) → (𝑘 ∈ (0...𝐽) ↔ (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽))) |
230 | 229 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → (𝑘 ∈ (0...𝐽) ↔ (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽))) |
231 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → 𝑑 = (𝑐 ↾ 𝑅)) |
232 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐽 − (𝑐‘𝑍)) → ((𝐶‘𝑅)‘𝑘) = ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
233 | 232 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → ((𝐶‘𝑅)‘𝑘) = ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
234 | 231, 233 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → (𝑑 ∈ ((𝐶‘𝑅)‘𝑘) ↔ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) |
235 | 230, 234 | anbi12d 630 |
. . . . . . . . . . 11
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → ((𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘)) ↔ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))))) |
236 | 228, 235 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → ((〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘))) ↔ (〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))))) |
237 | 236 | spc2egv 3528 |
. . . . . . . . 9
⊢ (((𝐽 − (𝑐‘𝑍)) ∈ V ∧ (𝑐 ↾ 𝑅) ∈ V) → ((〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) → ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘))))) |
238 | 223, 226,
237 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) → ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘))))) |
239 | 222, 238 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘)))) |
240 | | eliunxp 5735 |
. . . . . . 7
⊢
(〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘)))) |
241 | 239, 240 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
242 | | dvnprodlem1.d |
. . . . . 6
⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
243 | 241, 242 | fmptd 6970 |
. . . . 5
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
244 | 88 | nfcri 2893 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) |
245 | 89, 244 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
246 | 72, 245 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) |
247 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝐷‘𝑐) = (𝐷‘𝑒) |
248 | 246, 247 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑡((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) |
249 | 92 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
250 | 249 | adantlrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
251 | 250 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
252 | 242 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
253 | | opex 5373 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V |
254 | 253 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) |
255 | 252, 254 | fvmpt2d 6870 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
256 | 255 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
257 | 256 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((2nd ‘(𝐷‘𝑐))‘𝑡) = ((2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)‘𝑡)) |
258 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 − (𝑐‘𝑍)) ∈ V |
259 | 258, 225 | op2nd 7813 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) = (𝑐 ↾ 𝑅) |
260 | 259 | fveq1i 6757 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡) |
261 | 260 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((2nd
‘〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
262 | 257, 261 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅)‘𝑡) = ((2nd ‘(𝐷‘𝑐))‘𝑡)) |
263 | 262 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → ((𝑐 ↾ 𝑅)‘𝑡) = ((2nd ‘(𝐷‘𝑐))‘𝑡)) |
264 | 263 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((𝑐 ↾ 𝑅)‘𝑡) = ((2nd ‘(𝐷‘𝑐))‘𝑡)) |
265 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐷‘𝑐) = (𝐷‘𝑒)) |
266 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑒 → (𝑐‘𝑍) = (𝑒‘𝑍)) |
267 | 266 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 𝑒 → (𝐽 − (𝑐‘𝑍)) = (𝐽 − (𝑒‘𝑍))) |
268 | | reseq1 5874 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 𝑒 → (𝑐 ↾ 𝑅) = (𝑒 ↾ 𝑅)) |
269 | 267, 268 | opeq12d 4809 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑒 → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
270 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
271 | | opex 5373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
〈(𝐽 −
(𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉 ∈ V |
272 | 271 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉 ∈ V) |
273 | 242, 269,
270, 272 | fvmptd3 6880 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑒) = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
274 | 273 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐷‘𝑒) = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
275 | 265, 274 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
276 | 275 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
277 | 276 | adantlrl 716 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
278 | 277 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
279 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 − (𝑒‘𝑍)) ∈ V |
280 | | vex 3426 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑒 ∈ V |
281 | 280 | resex 5928 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ↾ 𝑅) ∈ V |
282 | 279, 281 | op2nd 7813 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝑒 ↾ 𝑅) |
283 | 282 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝑒 ↾ 𝑅)) |
284 | 278, 283 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (2nd ‘(𝐷‘𝑐)) = (𝑒 ↾ 𝑅)) |
285 | 284 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘(𝐷‘𝑐))‘𝑡) = ((𝑒 ↾ 𝑅)‘𝑡)) |
286 | | fvres 6775 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝑅 → ((𝑒 ↾ 𝑅)‘𝑡) = (𝑒‘𝑡)) |
287 | 286 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((𝑒 ↾ 𝑅)‘𝑡) = (𝑒‘𝑡)) |
288 | 285, 287 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘(𝐷‘𝑐))‘𝑡) = (𝑒‘𝑡)) |
289 | 251, 264,
288 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
290 | 289 | adantlr 711 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
291 | | simpl 482 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍}))) |
292 | | elunnel1 4080 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 ∈ {𝑍}) |
293 | | elsni 4575 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ {𝑍} → 𝑡 = 𝑍) |
294 | 292, 293 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 = 𝑍) |
295 | 294 | adantll 710 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 = 𝑍) |
296 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → 𝑡 = 𝑍) |
297 | 296 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑐‘𝑡) = (𝑐‘𝑍)) |
298 | 3 | nn0cnd 12225 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 ∈ ℂ) |
299 | 298 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℂ) |
300 | 299, 123 | nncand 11267 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝑐‘𝑍)) |
301 | 300 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
302 | 301 | adantrr 713 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → (𝑐‘𝑍) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
303 | 302 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑐‘𝑍) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
304 | 255 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (1st ‘(𝐷‘𝑐)) = (1st ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
305 | 258, 225 | op1st 7812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1st ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) = (𝐽 − (𝑐‘𝑍)) |
306 | 305 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (1st
‘〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) = (𝐽 − (𝑐‘𝑍))) |
307 | 304, 306 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) = (1st ‘(𝐷‘𝑐))) |
308 | 307 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝐽 − (1st ‘(𝐷‘𝑐)))) |
309 | 308 | adantrr 713 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝐽 − (1st ‘(𝐷‘𝑐)))) |
310 | 309 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝐽 − (1st ‘(𝐷‘𝑐)))) |
311 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷‘𝑐) = (𝐷‘𝑒) → (1st ‘(𝐷‘𝑐)) = (1st ‘(𝐷‘𝑒))) |
312 | 311 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘(𝐷‘𝑐)) = (1st ‘(𝐷‘𝑒))) |
313 | 273 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (1st ‘(𝐷‘𝑒)) = (1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
314 | 313 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘(𝐷‘𝑒)) = (1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
315 | 279, 281 | op1st 7812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝐽 − (𝑒‘𝑍)) |
316 | 315 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝐽 − (𝑒‘𝑍))) |
317 | 312, 314,
316 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘(𝐷‘𝑐)) = (𝐽 − (𝑒‘𝑍))) |
318 | 317 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (1st ‘(𝐷‘𝑐))) = (𝐽 − (𝐽 − (𝑒‘𝑍)))) |
319 | 298 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℂ) |
320 | | zsscn 12257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℤ
⊆ ℂ |
321 | 105, 320 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0...𝐽) ⊆
ℂ |
322 | 321 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ ℂ) |
323 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = 𝑒 → (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↔ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) |
324 | 323 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑒 → ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ↔ (𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)))) |
325 | | feq1 6565 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑒 → (𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽) ↔ 𝑒:(𝑅 ∪ {𝑍})⟶(0...𝐽))) |
326 | 324, 325 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 𝑒 → (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) ↔ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒:(𝑅 ∪ {𝑍})⟶(0...𝐽)))) |
327 | 326, 45 | chvarvv 2003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
328 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
329 | 327, 328 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑒‘𝑍) ∈ (0...𝐽)) |
330 | 322, 329 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑒‘𝑍) ∈ ℂ) |
331 | 319, 330 | nncand 11267 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑒‘𝑍))) = (𝑒‘𝑍)) |
332 | 331 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (𝐽 − (𝑒‘𝑍))) = (𝑒‘𝑍)) |
333 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑒‘𝑍) = (𝑒‘𝑍)) |
334 | 318, 332,
333 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (1st ‘(𝐷‘𝑐))) = (𝑒‘𝑍)) |
335 | 334 | adantlrl 716 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (1st ‘(𝐷‘𝑐))) = (𝑒‘𝑍)) |
336 | 303, 310,
335 | 3eqtrd 2782 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑐‘𝑍) = (𝑒‘𝑍)) |
337 | 336 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑐‘𝑍) = (𝑒‘𝑍)) |
338 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑍 → (𝑒‘𝑡) = (𝑒‘𝑍)) |
339 | 338 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (𝑒‘𝑍) = (𝑒‘𝑡)) |
340 | 339 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑒‘𝑍) = (𝑒‘𝑡)) |
341 | 297, 337,
340 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
342 | 341 | adantlr 711 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 = 𝑍) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
343 | 291, 295,
342 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
344 | 290, 343 | pm2.61dan 809 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
345 | 344 | ex 412 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) → (𝑐‘𝑡) = (𝑒‘𝑡))) |
346 | 248, 345 | ralrimi 3139 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → ∀𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = (𝑒‘𝑡)) |
347 | 67 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
348 | 347 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
349 | 327 | ffnd 6585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒 Fn (𝑅 ∪ {𝑍})) |
350 | 349 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → 𝑒 Fn (𝑅 ∪ {𝑍})) |
351 | 350 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → 𝑒 Fn (𝑅 ∪ {𝑍})) |
352 | | eqfnfv 6891 |
. . . . . . . . 9
⊢ ((𝑐 Fn (𝑅 ∪ {𝑍}) ∧ 𝑒 Fn (𝑅 ∪ {𝑍})) → (𝑐 = 𝑒 ↔ ∀𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = (𝑒‘𝑡))) |
353 | 348, 351,
352 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑐 = 𝑒 ↔ ∀𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = (𝑒‘𝑡))) |
354 | 346, 353 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → 𝑐 = 𝑒) |
355 | 354 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → ((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒)) |
356 | 355 | ralrimivva 3114 |
. . . . 5
⊢ (𝜑 → ∀𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)∀𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒)) |
357 | 243, 356 | jca 511 |
. . . 4
⊢ (𝜑 → (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)∀𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒))) |
358 | | dff13 7109 |
. . . 4
⊢ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)∀𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒))) |
359 | 357, 358 | sylibr 233 |
. . 3
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
360 | | eliun 4925 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
361 | 360 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
362 | 361 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
363 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝜑 |
364 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑝 |
365 | | nfiu1 4955 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
366 | 364, 365 | nfel 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
367 | 363, 366 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
368 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} |
369 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑘 ∈ (0...𝐽) |
370 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡𝑝 |
371 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡{𝑘} |
372 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡𝑅 |
373 | 84, 372 | nffv 6766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(𝐶‘𝑅) |
374 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝑘 |
375 | 373, 374 | nffv 6766 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡((𝐶‘𝑅)‘𝑘) |
376 | 371, 375 | nfxp 5613 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
377 | 370, 376 | nfel 2920 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
378 | 72, 369, 377 | nf3an 1905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
379 | | 0zd 12261 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 0 ∈
ℤ) |
380 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝐽 ∈ ℤ) |
381 | 380 | 3ad2antl1 1183 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝐽 ∈ ℤ) |
382 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ 𝑅 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
383 | 382 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
384 | | simp1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
385 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
386 | | xp2nd 7837 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
387 | 386 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
388 | 187 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
389 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑘 → (0...𝑛) = (0...𝑘)) |
390 | 389 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝑘 → ((0...𝑛) ↑m 𝑅) = ((0...𝑘) ↑m 𝑅)) |
391 | | rabeq 3408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((0...𝑛)
↑m 𝑅) =
((0...𝑘) ↑m
𝑅) → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
392 | 390, 391 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
393 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝑘 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘)) |
394 | 393 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
395 | 392, 394 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
396 | 395 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
397 | | elfznn0 13278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℕ0) |
398 | 397 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℕ0) |
399 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((0...𝑘)
↑m 𝑅)
∈ V |
400 | 399 | rabex 5251 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ V |
401 | 400 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ V) |
402 | 388, 396,
398, 401 | fvmptd 6864 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
403 | 402 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐶‘𝑅)‘𝑘) = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
404 | 387, 403 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
405 | | elrabi 3611 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} → (2nd ‘𝑝) ∈ ((0...𝑘) ↑m 𝑅)) |
406 | 405 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ (2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) → (2nd ‘𝑝) ∈ ((0...𝑘) ↑m 𝑅)) |
407 | 384, 385,
404, 406 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((0...𝑘) ↑m 𝑅)) |
408 | | elmapi 8595 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((2nd ‘𝑝) ∈ ((0...𝑘) ↑m 𝑅) → (2nd ‘𝑝):𝑅⟶(0...𝑘)) |
409 | 407, 408 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝑘)) |
410 | 409 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (2nd ‘𝑝):𝑅⟶(0...𝑘)) |
411 | 410 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘)) |
412 | 411 | elfzelzd 13186 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ ℤ) |
413 | 383, 412 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
414 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍}))) |
415 | 294 | adantll 710 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 = 𝑍) |
416 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → 𝑡 = 𝑍) |
417 | 128 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → ¬ 𝑍 ∈ 𝑅) |
418 | 416, 417 | eqneltrd 2858 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → ¬ 𝑡 ∈ 𝑅) |
419 | 418 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
420 | 419 | 3ad2antl1 1183 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
421 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → 𝐽 ∈ ℤ) |
422 | 421 | 3ad2antl1 1183 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → 𝐽 ∈ ℤ) |
423 | | xp1st 7836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ {𝑘}) |
424 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((1st ‘𝑝) ∈ {𝑘} → (1st ‘𝑝) = 𝑘) |
425 | 423, 424 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) = 𝑘) |
426 | 425 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) = 𝑘) |
427 | 105 | sseli 3913 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℤ) |
428 | 427 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ ℤ) |
429 | 426, 428 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℤ) |
430 | 429 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℤ) |
431 | 430 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (1st ‘𝑝) ∈
ℤ) |
432 | 422, 431 | zsubcld 12360 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − (1st ‘𝑝)) ∈
ℤ) |
433 | 420, 432 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
434 | 433 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
435 | 414, 415,
434 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
436 | 413, 435 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
437 | 409 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘)) |
438 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → 0 ≤ ((2nd ‘𝑝)‘𝑡)) |
439 | 437, 438 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 0 ≤ ((2nd
‘𝑝)‘𝑡)) |
440 | 382 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ 𝑅 → ((2nd ‘𝑝)‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
441 | 440 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
442 | 439, 441 | breqtrd 5096 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
443 | 442 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
444 | | simpll 763 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → (𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)))) |
445 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ≤ 𝐽) |
446 | | elfzel2 13183 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℤ) |
447 | 446 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℝ) |
448 | 107 | sseli 3913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℝ) |
449 | 447, 448 | subge0d 11495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ (𝐽 − 𝑘) ↔ 𝑘 ≤ 𝐽)) |
450 | 445, 449 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ (𝐽 − 𝑘)) |
451 | 450 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑡 = 𝑍) → 0 ≤ (𝐽 − 𝑘)) |
452 | 451 | 3ad2antl2 1184 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → 0 ≤ (𝐽 − 𝑘)) |
453 | 384, 418 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → ¬ 𝑡 ∈ 𝑅) |
454 | 453 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
455 | 426 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) = 𝑘) |
456 | 455 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) = (𝐽 − 𝑘)) |
457 | 456 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − (1st ‘𝑝)) = (𝐽 − 𝑘)) |
458 | 454, 457 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − 𝑘) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
459 | 452, 458 | breqtrd 5096 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
460 | 444, 415,
459 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
461 | 443, 460 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
462 | | simpl2 1190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑘 ∈ (0...𝐽)) |
463 | | fzssz 13187 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0...𝑘) ⊆
ℤ |
464 | 463 | sseli 3913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → ((2nd ‘𝑝)‘𝑡) ∈ ℤ) |
465 | 464 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → ((2nd ‘𝑝)‘𝑡) ∈ ℝ) |
466 | 465 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → ((2nd ‘𝑝)‘𝑡) ∈ ℝ) |
467 | 448 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℝ) |
468 | 447 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
469 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → ((2nd ‘𝑝)‘𝑡) ≤ 𝑘) |
470 | 469 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → ((2nd ‘𝑝)‘𝑡) ≤ 𝑘) |
471 | 445 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝐽) |
472 | 466, 467,
468, 470, 471 | letrd 11062 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → ((2nd ‘𝑝)‘𝑡) ≤ 𝐽) |
473 | 437, 462,
472 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ≤ 𝐽) |
474 | 473 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ≤ 𝐽) |
475 | 383, 474 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
476 | 458 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − 𝑘)) |
477 | 398 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ≤ 𝑘) |
478 | 447 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
479 | 448 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℝ) |
480 | 478, 479 | subge02d 11497 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0 ≤ 𝑘 ↔ (𝐽 − 𝑘) ≤ 𝐽)) |
481 | 477, 480 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽 − 𝑘) ≤ 𝐽) |
482 | 481 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑡 = 𝑍) → (𝐽 − 𝑘) ≤ 𝐽) |
483 | 482 | 3adantl3 1166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − 𝑘) ≤ 𝐽) |
484 | 476, 483 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
485 | 444, 415,
484 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
486 | 475, 485 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
487 | 379, 381,
436, 461, 486 | elfzd 13176 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈ (0...𝐽)) |
488 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
489 | 378, 487,
488 | fmptdf 6973 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))):(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
490 | | ovexd 7290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (0...𝐽) ∈ V) |
491 | 384, 18 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑅 ∪ {𝑍}) ∈ V) |
492 | 490, 491 | elmapd 8587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ↔ (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))):(𝑅 ∪ {𝑍})⟶(0...𝐽))) |
493 | 489, 492 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
494 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
495 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 𝑡 → (𝑟 ∈ 𝑅 ↔ 𝑡 ∈ 𝑅)) |
496 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 𝑡 → ((2nd ‘𝑝)‘𝑟) = ((2nd ‘𝑝)‘𝑡)) |
497 | 495, 496 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 𝑡 → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
498 | 497 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑟 = 𝑡) → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
499 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
500 | 494, 498,
499, 436 | fvmptd 6864 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
501 | 500 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) → ((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) |
502 | 378, 501 | ralrimi 3139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∀𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
503 | 502 | sumeq2d 15342 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
504 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) |
505 | 384, 103 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
506 | 384, 46 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑍 ∈ 𝑇) |
507 | 384, 128 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ¬ 𝑍 ∈ 𝑅) |
508 | 382 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
509 | 437 | elfzelzd 13186 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ ℤ) |
510 | 509 | zcnd 12356 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ ℂ) |
511 | 508, 510 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℂ) |
512 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑍 → (𝑡 ∈ 𝑅 ↔ 𝑍 ∈ 𝑅)) |
513 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑍 → ((2nd ‘𝑝)‘𝑡) = ((2nd ‘𝑝)‘𝑍)) |
514 | 512, 513 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑍 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝)))) |
515 | 128 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ¬ 𝑍 ∈ 𝑅) |
516 | 515 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
517 | 516 | 3adant2 1129 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
518 | 4 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐽 ∈ ℤ) |
519 | 518, 430 | zsubcld 12360 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈
ℤ) |
520 | 519 | zcnd 12356 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈
ℂ) |
521 | 517, 520 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) ∈
ℂ) |
522 | 378, 504,
505, 506, 507, 511, 514, 521 | fsumsplitsn 15384 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) + if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))))) |
523 | 382 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡))) |
524 | 378, 523 | ralrimi 3139 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∀𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
525 | 524 | sumeq2d 15342 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡)) |
526 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = (2nd ‘𝑝) → 𝑅 = 𝑅) |
527 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 = (2nd ‘𝑝) ∧ 𝑡 ∈ 𝑅) → 𝑐 = (2nd ‘𝑝)) |
528 | 527 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 = (2nd ‘𝑝) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((2nd ‘𝑝)‘𝑡)) |
529 | 526, 528 | sumeq12rdv 15347 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = (2nd ‘𝑝) → Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡)) |
530 | 529 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = (2nd ‘𝑝) → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘 ↔ Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘)) |
531 | 530 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ↔ ((2nd ‘𝑝) ∈ ((0...𝑘) ↑m 𝑅) ∧ Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘)) |
532 | 404, 531 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((2nd ‘𝑝) ∈ ((0...𝑘) ↑m 𝑅) ∧ Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘)) |
533 | 532 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘) |
534 | 525, 533 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = 𝑘) |
535 | 507 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
536 | 535, 456 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − 𝑘)) |
537 | 534, 536 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) + if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝)))) = (𝑘 + (𝐽 − 𝑘))) |
538 | 321 | sseli 3913 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℂ) |
539 | 538 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ ℂ) |
540 | 384, 298 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐽 ∈ ℂ) |
541 | 539, 540 | pncan3d 11265 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 + (𝐽 − 𝑘)) = 𝐽) |
542 | 537, 541 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) + if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝)))) = 𝐽) |
543 | 503, 522,
542 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽) |
544 | 493, 543 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽)) |
545 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑟 → (𝑡 ∈ 𝑅 ↔ 𝑟 ∈ 𝑅)) |
546 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑟 → ((2nd ‘𝑝)‘𝑡) = ((2nd ‘𝑝)‘𝑟)) |
547 | 545, 546 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑟 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) |
548 | 547 | cbvmptv 5183 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) |
549 | 548 | eqeq2i 2751 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↔ 𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
550 | 549 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → 𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
551 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) → (𝑐‘𝑡) = ((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡)) |
552 | 551 | sumeq2sdv 15344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡)) |
553 | 550, 552 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡)) |
554 | 553 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → (Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽)) |
555 | 554 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ↔ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽)) |
556 | 544, 555 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
557 | 556 | 3exp 1117 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}))) |
558 | 557 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}))) |
559 | 367, 368,
558 | rexlimd 3245 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽})) |
560 | 362, 559 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
561 | 37 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} = ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
562 | 561 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} = ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
563 | 560, 562 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
564 | 242 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
565 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) |
566 | 548 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
567 | 565, 566 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
568 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → 𝑟 = 𝑍) |
569 | 128 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → ¬ 𝑍 ∈ 𝑅) |
570 | 568, 569 | eqneltrd 2858 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → ¬ 𝑟 ∈ 𝑅) |
571 | 570 | iffalsed 4467 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
572 | 571 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) ∧ 𝑟 = 𝑍) → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
573 | 50 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
574 | | ovexd 7290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (1st ‘𝑝)) ∈ V) |
575 | 567, 572,
573, 574 | fvmptd 6864 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑐‘𝑍) = (𝐽 − (1st ‘𝑝))) |
576 | 575 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝑐‘𝑍)) = (𝐽 − (𝐽 − (1st ‘𝑝)))) |
577 | 576 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝑐‘𝑍)) = (𝐽 − (𝐽 − (1st ‘𝑝)))) |
578 | 298 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝐽 ∈ ℂ) |
579 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(1st ‘𝑝) ∈ (0...𝐽) |
580 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
581 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (0...𝐽) ∧ (1st ‘𝑝) = 𝑘) → (1st ‘𝑝) = 𝑘) |
582 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (0...𝐽) ∧ (1st ‘𝑝) = 𝑘) → 𝑘 ∈ (0...𝐽)) |
583 | 581, 582 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝐽) ∧ (1st ‘𝑝) = 𝑘) → (1st ‘𝑝) ∈ (0...𝐽)) |
584 | 580, 426,
583 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
585 | 584 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
586 | 585 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽)))) |
587 | 366, 579,
586 | rexlimd 3245 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
588 | 361, 587 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽)) |
589 | 588 | elfzelzd 13186 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈
ℤ) |
590 | 589 | zcnd 12356 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈
ℂ) |
591 | 590 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (1st
‘𝑝) ∈
ℂ) |
592 | 578, 591 | nncand 11267 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝐽 − (1st ‘𝑝))) = (1st
‘𝑝)) |
593 | 577, 592 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝑐‘𝑍)) = (1st ‘𝑝)) |
594 | | reseq1 5874 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → (𝑐 ↾ 𝑅) = ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↾ 𝑅)) |
595 | 594 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑐 ↾ 𝑅) = ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↾ 𝑅)) |
596 | 68 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑅 ⊆ (𝑅 ∪ {𝑍})) |
597 | 596 | resmptd 5937 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↾ 𝑅) = (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) |
598 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝) |
599 | 382 | mpteq2ia 5173 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑡 ∈ 𝑅 ↦ ((2nd ‘𝑝)‘𝑡)) |
600 | 599 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑡 ∈ 𝑅 ↦ ((2nd ‘𝑝)‘𝑡))) |
601 | 409 | feqmptd 6819 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) = (𝑡 ∈ 𝑅 ↦ ((2nd ‘𝑝)‘𝑡))) |
602 | 600, 601 | eqtr4d 2781 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)) |
603 | 602 | 3exp 1117 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)))) |
604 | 603 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)))) |
605 | 367, 598,
604 | rexlimd 3245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝))) |
606 | 362, 605 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)) |
607 | 606 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)) |
608 | 595, 597,
607 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑐 ↾ 𝑅) = (2nd ‘𝑝)) |
609 | 593, 608 | opeq12d 4809 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
610 | | opex 5373 |
. . . . . . . . . 10
⊢
〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ V |
611 | 610 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈
V) |
612 | 564, 609,
563, 611 | fvmptd 6864 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) = 〈(1st
‘𝑝), (2nd
‘𝑝)〉) |
613 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑘〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝 |
614 | | 1st2nd2 7843 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
615 | 614 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝) |
616 | 615 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝)) |
617 | 616 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝))) |
618 | 367, 613,
617 | rexlimd 3245 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝)) |
619 | 362, 618 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝) |
620 | 612, 619 | eqtr2d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑝 = (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))))) |
621 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → (𝐷‘𝑐) = (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))))) |
622 | 621 | rspceeqv 3567 |
. . . . . . 7
⊢ (((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑝 = (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))))) → ∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐)) |
623 | 563, 620,
622 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐)) |
624 | 623 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐)) |
625 | 243, 624 | jca 511 |
. . . 4
⊢ (𝜑 → (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐))) |
626 | | dffo3 6960 |
. . . 4
⊢ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐))) |
627 | 625, 626 | sylibr 233 |
. . 3
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
628 | 359, 627 | jca 511 |
. 2
⊢ (𝜑 → (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)))) |
629 | | df-f1o 6425 |
. 2
⊢ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)))) |
630 | 628, 629 | sylibr 233 |
1
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |