MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlk Structured version   Visualization version   GIF version

Theorem umgr2wlk 27899
Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2wlk ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)

Proof of Theorem umgr2wlk
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgruhgr 27061 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
2 umgr2wlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2825 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
4 eqid 2739 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgredgiedgb 27083 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
63, 5syl5bb 286 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
71, 6syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
87biimpd 232 . . . 4 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
98a1d 25 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))))
1093imp 1112 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
112eleq2i 2825 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
124uhgredgiedgb 27083 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1311, 12syl5bb 286 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
141, 13syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1514biimpd 232 . . . 4 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1615a1dd 50 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))))
17163imp 1112 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
18 s2cli 14343 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ ∈ Word V
19 s3cli 14344 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
2018, 19pm3.2i 474 . . . . . . . . 9 (⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V)
21 eqid 2739 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ = ⟨“𝑗𝑖”⟩
22 eqid 2739 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
23 simpl1 1192 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → 𝐺 ∈ UMGraph)
24 3simpc 1151 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2524adantr 484 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
26 simpl 486 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
2726eqcomd 2745 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
2827adantl 485 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
29 simpr 488 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
3029eqcomd 2745 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
3130adantl 485 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
322, 4, 21, 22, 23, 25, 28, 31umgr2adedgwlk 27895 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
33 breq12 5045 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(Walks‘𝐺)𝑝 ↔ ⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
34 fveqeq2 6695 . . . . . . . . . . . 12 (𝑓 = ⟨“𝑗𝑖”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
3534adantr 484 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
36 fveq1 6685 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
3736eqeq2d 2750 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐴 = (𝑝‘0) ↔ 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0)))
38 fveq1 6685 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
3938eqeq2d 2750 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐵 = (𝑝‘1) ↔ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1)))
40 fveq1 6685 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
4140eqeq2d 2750 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐶 = (𝑝‘2) ↔ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))
4237, 39, 413anbi123d 1437 . . . . . . . . . . . 12 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4342adantl 485 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4433, 35, 433anbi123d 1437 . . . . . . . . . 10 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))))
4544spc2egv 3506 . . . . . . . . 9 ((⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V) → ((⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
4620, 32, 45mpsyl 68 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
4746exp32 424 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4847com12 32 . . . . . 6 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4948rexlimivw 3193 . . . . 5 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5049com13 88 . . . 4 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5150rexlimivw 3193 . . 3 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5251com12 32 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5310, 17, 52mp2d 49 1 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2114  wrex 3055  Vcvv 3400  {cpr 4528   class class class wbr 5040  dom cdm 5535  cfv 6349  0cc0 10627  1c1 10628  2c2 11783  chash 13794  Word cword 13967  ⟨“cs2 14304  ⟨“cs3 14305  iEdgciedg 26954  Edgcedg 27004  UHGraphcuhgr 27013  UMGraphcumgr 27038  Walkscwlks 27550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-oadd 8147  df-er 8332  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-dju 9415  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-n0 11989  df-z 12075  df-uz 12337  df-fz 12994  df-fzo 13137  df-hash 13795  df-word 13968  df-concat 14024  df-s1 14051  df-s2 14311  df-s3 14312  df-edg 27005  df-uhgr 27015  df-upgr 27039  df-umgr 27040  df-wlks 27553
This theorem is referenced by:  umgr2wlkon  27900  umgrwwlks2on  27907
  Copyright terms: Public domain W3C validator