MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlk Structured version   Visualization version   GIF version

Theorem umgr2wlk 29979
Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2wlk ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)

Proof of Theorem umgr2wlk
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgruhgr 29136 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
2 umgr2wlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2831 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
4 eqid 2735 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgredgiedgb 29158 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
63, 5bitrid 283 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
71, 6syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
87biimpd 229 . . . 4 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
98a1d 25 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))))
1093imp 1110 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
112eleq2i 2831 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
124uhgredgiedgb 29158 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1311, 12bitrid 283 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
141, 13syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1514biimpd 229 . . . 4 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1615a1dd 50 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))))
17163imp 1110 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
18 s2cli 14916 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ ∈ Word V
19 s3cli 14917 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
2018, 19pm3.2i 470 . . . . . . . . 9 (⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V)
21 eqid 2735 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ = ⟨“𝑗𝑖”⟩
22 eqid 2735 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
23 simpl1 1190 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → 𝐺 ∈ UMGraph)
24 3simpc 1149 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2524adantr 480 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
26 simpl 482 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
2726eqcomd 2741 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
2827adantl 481 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
29 simpr 484 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
3029eqcomd 2741 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
3130adantl 481 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
322, 4, 21, 22, 23, 25, 28, 31umgr2adedgwlk 29975 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
33 breq12 5153 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(Walks‘𝐺)𝑝 ↔ ⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
34 fveqeq2 6916 . . . . . . . . . . . 12 (𝑓 = ⟨“𝑗𝑖”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
3534adantr 480 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
36 fveq1 6906 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
3736eqeq2d 2746 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐴 = (𝑝‘0) ↔ 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0)))
38 fveq1 6906 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
3938eqeq2d 2746 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐵 = (𝑝‘1) ↔ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1)))
40 fveq1 6906 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
4140eqeq2d 2746 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐶 = (𝑝‘2) ↔ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))
4237, 39, 413anbi123d 1435 . . . . . . . . . . . 12 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4342adantl 481 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4433, 35, 433anbi123d 1435 . . . . . . . . . 10 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))))
4544spc2egv 3599 . . . . . . . . 9 ((⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V) → ((⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
4620, 32, 45mpsyl 68 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
4746exp32 420 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4847com12 32 . . . . . 6 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4948rexlimivw 3149 . . . . 5 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5049com13 88 . . . 4 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5150rexlimivw 3149 . . 3 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5251com12 32 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5310, 17, 52mp2d 49 1 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wrex 3068  Vcvv 3478  {cpr 4633   class class class wbr 5148  dom cdm 5689  cfv 6563  0cc0 11153  1c1 11154  2c2 12319  chash 14366  Word cword 14549  ⟨“cs2 14877  ⟨“cs3 14878  iEdgciedg 29029  Edgcedg 29079  UHGraphcuhgr 29088  UMGraphcumgr 29113  Walkscwlks 29629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-umgr 29115  df-wlks 29632
This theorem is referenced by:  umgr2wlkon  29980  umgrwwlks2on  29987
  Copyright terms: Public domain W3C validator