MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlk Structured version   Visualization version   GIF version

Theorem umgr2wlk 28894
Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2wlk ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)

Proof of Theorem umgr2wlk
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgruhgr 28055 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
2 umgr2wlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2829 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
4 eqid 2736 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgredgiedgb 28077 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
63, 5bitrid 282 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
71, 6syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
87biimpd 228 . . . 4 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
98a1d 25 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))))
1093imp 1111 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
112eleq2i 2829 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
124uhgredgiedgb 28077 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1311, 12bitrid 282 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
141, 13syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1514biimpd 228 . . . 4 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1615a1dd 50 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))))
17163imp 1111 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
18 s2cli 14769 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ ∈ Word V
19 s3cli 14770 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
2018, 19pm3.2i 471 . . . . . . . . 9 (⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V)
21 eqid 2736 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ = ⟨“𝑗𝑖”⟩
22 eqid 2736 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
23 simpl1 1191 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → 𝐺 ∈ UMGraph)
24 3simpc 1150 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2524adantr 481 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
26 simpl 483 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
2726eqcomd 2742 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
2827adantl 482 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
29 simpr 485 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
3029eqcomd 2742 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
3130adantl 482 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
322, 4, 21, 22, 23, 25, 28, 31umgr2adedgwlk 28890 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
33 breq12 5110 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(Walks‘𝐺)𝑝 ↔ ⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
34 fveqeq2 6851 . . . . . . . . . . . 12 (𝑓 = ⟨“𝑗𝑖”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
3534adantr 481 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
36 fveq1 6841 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
3736eqeq2d 2747 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐴 = (𝑝‘0) ↔ 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0)))
38 fveq1 6841 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
3938eqeq2d 2747 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐵 = (𝑝‘1) ↔ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1)))
40 fveq1 6841 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
4140eqeq2d 2747 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐶 = (𝑝‘2) ↔ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))
4237, 39, 413anbi123d 1436 . . . . . . . . . . . 12 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4342adantl 482 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4433, 35, 433anbi123d 1436 . . . . . . . . . 10 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))))
4544spc2egv 3558 . . . . . . . . 9 ((⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V) → ((⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
4620, 32, 45mpsyl 68 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
4746exp32 421 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4847com12 32 . . . . . 6 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4948rexlimivw 3148 . . . . 5 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5049com13 88 . . . 4 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5150rexlimivw 3148 . . 3 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5251com12 32 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5310, 17, 52mp2d 49 1 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wrex 3073  Vcvv 3445  {cpr 4588   class class class wbr 5105  dom cdm 5633  cfv 6496  0cc0 11051  1c1 11052  2c2 12208  chash 14230  Word cword 14402  ⟨“cs2 14730  ⟨“cs3 14731  iEdgciedg 27948  Edgcedg 27998  UHGraphcuhgr 28007  UMGraphcumgr 28032  Walkscwlks 28544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-edg 27999  df-uhgr 28009  df-upgr 28033  df-umgr 28034  df-wlks 28547
This theorem is referenced by:  umgr2wlkon  28895  umgrwwlks2on  28902
  Copyright terms: Public domain W3C validator