MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlk Structured version   Visualization version   GIF version

Theorem umgr2wlk 27278
Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2wlk ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)

Proof of Theorem umgr2wlk
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgruhgr 26402 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
2 umgr2wlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2898 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
4 eqid 2825 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgredgiedgb 26424 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
63, 5syl5bb 275 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
71, 6syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
87biimpd 221 . . . 4 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
98a1d 25 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))))
1093imp 1141 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
112eleq2i 2898 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
124uhgredgiedgb 26424 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1311, 12syl5bb 275 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
141, 13syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1514biimpd 221 . . . 4 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1615a1dd 50 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))))
17163imp 1141 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
18 s2cli 14001 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ ∈ Word V
19 s3cli 14002 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
2018, 19pm3.2i 464 . . . . . . . . 9 (⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V)
21 eqid 2825 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ = ⟨“𝑗𝑖”⟩
22 eqid 2825 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
23 simpl1 1246 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → 𝐺 ∈ UMGraph)
24 3simpc 1186 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2524adantr 474 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
26 simpl 476 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
2726eqcomd 2831 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
2827adantl 475 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
29 simpr 479 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
3029eqcomd 2831 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
3130adantl 475 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
322, 4, 21, 22, 23, 25, 28, 31umgr2adedgwlk 27274 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
33 breq12 4878 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(Walks‘𝐺)𝑝 ↔ ⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
34 fveqeq2 6442 . . . . . . . . . . . 12 (𝑓 = ⟨“𝑗𝑖”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
3534adantr 474 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
36 fveq1 6432 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
3736eqeq2d 2835 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐴 = (𝑝‘0) ↔ 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0)))
38 fveq1 6432 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
3938eqeq2d 2835 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐵 = (𝑝‘1) ↔ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1)))
40 fveq1 6432 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
4140eqeq2d 2835 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐶 = (𝑝‘2) ↔ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))
4237, 39, 413anbi123d 1564 . . . . . . . . . . . 12 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4342adantl 475 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4433, 35, 433anbi123d 1564 . . . . . . . . . 10 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))))
4544spc2egv 3512 . . . . . . . . 9 ((⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V) → ((⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
4620, 32, 45mpsyl 68 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
4746exp32 413 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4847com12 32 . . . . . 6 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4948rexlimivw 3238 . . . . 5 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5049com13 88 . . . 4 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5150rexlimivw 3238 . . 3 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5251com12 32 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5310, 17, 52mp2d 49 1 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wex 1878  wcel 2164  wrex 3118  Vcvv 3414  {cpr 4399   class class class wbr 4873  dom cdm 5342  cfv 6123  0cc0 10252  1c1 10253  2c2 11406  chash 13410  Word cword 13574  ⟨“cs2 13962  ⟨“cs3 13963  iEdgciedg 26295  Edgcedg 26345  UHGraphcuhgr 26354  UMGraphcumgr 26379  Walkscwlks 26894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-ifp 1090  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-s2 13969  df-s3 13970  df-edg 26346  df-uhgr 26356  df-upgr 26380  df-umgr 26381  df-wlks 26897
This theorem is referenced by:  umgr2wlkon  27279  umgrwwlks2on  27286
  Copyright terms: Public domain W3C validator