Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlk Structured version   Visualization version   GIF version

Theorem umgr2wlk 27278
 Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2wlk ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)

Proof of Theorem umgr2wlk
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgruhgr 26402 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
2 umgr2wlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2898 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
4 eqid 2825 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgredgiedgb 26424 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
63, 5syl5bb 275 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
71, 6syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
87biimpd 221 . . . 4 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)))
98a1d 25 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))))
1093imp 1141 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
112eleq2i 2898 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
124uhgredgiedgb 26424 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1311, 12syl5bb 275 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
141, 13syl 17 . . . . 5 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1514biimpd 221 . . . 4 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗)))
1615a1dd 50 . . 3 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐵, 𝐶} ∈ 𝐸 → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))))
17163imp 1141 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
18 s2cli 14001 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ ∈ Word V
19 s3cli 14002 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
2018, 19pm3.2i 464 . . . . . . . . 9 (⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V)
21 eqid 2825 . . . . . . . . . 10 ⟨“𝑗𝑖”⟩ = ⟨“𝑗𝑖”⟩
22 eqid 2825 . . . . . . . . . 10 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
23 simpl1 1246 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → 𝐺 ∈ UMGraph)
24 3simpc 1186 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2524adantr 474 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
26 simpl 476 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗))
2726eqcomd 2831 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
2827adantl 475 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})
29 simpr 479 . . . . . . . . . . . 12 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))
3029eqcomd 2831 . . . . . . . . . . 11 (({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
3130adantl 475 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ((iEdg‘𝐺)‘𝑖) = {𝐵, 𝐶})
322, 4, 21, 22, 23, 25, 28, 31umgr2adedgwlk 27274 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
33 breq12 4878 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(Walks‘𝐺)𝑝 ↔ ⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
34 fveqeq2 6442 . . . . . . . . . . . 12 (𝑓 = ⟨“𝑗𝑖”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
3534adantr 474 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑖”⟩) = 2))
36 fveq1 6432 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
3736eqeq2d 2835 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐴 = (𝑝‘0) ↔ 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0)))
38 fveq1 6432 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
3938eqeq2d 2835 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐵 = (𝑝‘1) ↔ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1)))
40 fveq1 6432 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝑝‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
4140eqeq2d 2835 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → (𝐶 = (𝑝‘2) ↔ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))
4237, 39, 413anbi123d 1564 . . . . . . . . . . . 12 (𝑝 = ⟨“𝐴𝐵𝐶”⟩ → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4342adantl 475 . . . . . . . . . . 11 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))))
4433, 35, 433anbi123d 1564 . . . . . . . . . 10 ((𝑓 = ⟨“𝑗𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ (⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2)))))
4544spc2egv 3512 . . . . . . . . 9 ((⟨“𝑗𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V) → ((⟨“𝑗𝑖”⟩(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑗𝑖”⟩) = 2 ∧ (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ∧ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
4620, 32, 45mpsyl 68 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖))) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
4746exp32 413 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4847com12 32 . . . . . 6 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
4948rexlimivw 3238 . . . . 5 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5049com13 88 . . . 4 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5150rexlimivw 3238 . . 3 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5251com12 32 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑗) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5310, 17, 52mp2d 49 1 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1111   = wceq 1656  ∃wex 1878   ∈ wcel 2164  ∃wrex 3118  Vcvv 3414  {cpr 4399   class class class wbr 4873  dom cdm 5342  ‘cfv 6123  0cc0 10252  1c1 10253  2c2 11406  ♯chash 13410  Word cword 13574  ⟨“cs2 13962  ⟨“cs3 13963  iEdgciedg 26295  Edgcedg 26345  UHGraphcuhgr 26354  UMGraphcumgr 26379  Walkscwlks 26894 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-ifp 1090  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-s2 13969  df-s3 13970  df-edg 26346  df-uhgr 26356  df-upgr 26380  df-umgr 26381  df-wlks 26897 This theorem is referenced by:  umgr2wlkon  27279  umgrwwlks2on  27286
 Copyright terms: Public domain W3C validator