MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2 Structured version   Visualization version   GIF version

Theorem elwwlks2 29209
Description: A walk of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
elwwlks2.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
elwwlks2 (𝐺 ∈ UPGraph β†’ (π‘Š ∈ (2 WWalksN 𝐺) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))))))
Distinct variable groups:   𝐺,π‘Ž,𝑏,𝑐,𝑓,𝑝   𝑉,π‘Ž,𝑏,𝑐,𝑓,𝑝   π‘Š,π‘Ž,𝑏,𝑐,𝑓,𝑝

Proof of Theorem elwwlks2
StepHypRef Expression
1 elwwlks2.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
21wwlksnwwlksnon 29158 . . 3 (π‘Š ∈ (2 WWalksN 𝐺) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 π‘Š ∈ (π‘Ž(2 WWalksNOn 𝐺)𝑐))
32a1i 11 . 2 (𝐺 ∈ UPGraph β†’ (π‘Š ∈ (2 WWalksN 𝐺) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 π‘Š ∈ (π‘Ž(2 WWalksNOn 𝐺)𝑐)))
41elwwlks2on 29202 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) β†’ (π‘Š ∈ (π‘Ž(2 WWalksNOn 𝐺)𝑐) ↔ βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2))))
543expb 1120 . . 3 ((𝐺 ∈ UPGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) β†’ (π‘Š ∈ (π‘Ž(2 WWalksNOn 𝐺)𝑐) ↔ βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2))))
652rexbidva 3217 . 2 (𝐺 ∈ UPGraph β†’ (βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 π‘Š ∈ (π‘Ž(2 WWalksNOn 𝐺)𝑐) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2))))
7 rexcom 3287 . . . 4 (βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) ↔ βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)))
8 s3cli 14828 . . . . . . . . . 10 βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∈ Word V
98a1i 11 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∈ Word V)
10 simplr 767 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)
11 simpr 485 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)
1210, 11eqtr4d 2775 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ π‘Š = 𝑝)
1312breq2d 5159 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (𝑓(Walksβ€˜πΊ)π‘Š ↔ 𝑓(Walksβ€˜πΊ)𝑝))
1413biimpd 228 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (𝑓(Walksβ€˜πΊ)π‘Š β†’ 𝑓(Walksβ€˜πΊ)𝑝))
1514com12 32 . . . . . . . . . . . . 13 (𝑓(Walksβ€˜πΊ)π‘Š β†’ (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ 𝑓(Walksβ€˜πΊ)𝑝))
1615adantr 481 . . . . . . . . . . . 12 ((𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2) β†’ (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ 𝑓(Walksβ€˜πΊ)𝑝))
1716impcom 408 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) β†’ 𝑓(Walksβ€˜πΊ)𝑝)
18 simprr 771 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) β†’ (β™―β€˜π‘“) = 2)
19 vex 3478 . . . . . . . . . . . . . . . 16 π‘Ž ∈ V
20 s3fv0 14838 . . . . . . . . . . . . . . . . 17 (π‘Ž ∈ V β†’ (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜0) = π‘Ž)
2120eqcomd 2738 . . . . . . . . . . . . . . . 16 (π‘Ž ∈ V β†’ π‘Ž = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜0))
2219, 21mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ π‘Ž = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜0))
23 fveq1 6887 . . . . . . . . . . . . . . 15 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ (π‘β€˜0) = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜0))
2422, 23eqtr4d 2775 . . . . . . . . . . . . . 14 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ π‘Ž = (π‘β€˜0))
25 vex 3478 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
26 s3fv1 14839 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ V β†’ (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜1) = 𝑏)
2726eqcomd 2738 . . . . . . . . . . . . . . . 16 (𝑏 ∈ V β†’ 𝑏 = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜1))
2825, 27mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ 𝑏 = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜1))
29 fveq1 6887 . . . . . . . . . . . . . . 15 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ (π‘β€˜1) = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜1))
3028, 29eqtr4d 2775 . . . . . . . . . . . . . 14 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ 𝑏 = (π‘β€˜1))
31 vex 3478 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
32 s3fv2 14840 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ V β†’ (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜2) = 𝑐)
3332eqcomd 2738 . . . . . . . . . . . . . . . 16 (𝑐 ∈ V β†’ 𝑐 = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜2))
3431, 33mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ 𝑐 = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜2))
35 fveq1 6887 . . . . . . . . . . . . . . 15 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ (π‘β€˜2) = (βŸ¨β€œπ‘Žπ‘π‘β€βŸ©β€˜2))
3634, 35eqtr4d 2775 . . . . . . . . . . . . . 14 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ 𝑐 = (π‘β€˜2))
3724, 30, 363jca 1128 . . . . . . . . . . . . 13 (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© β†’ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)))
3837adantl 482 . . . . . . . . . . . 12 (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)))
3938adantr 481 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) β†’ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)))
4017, 18, 393jca 1128 . . . . . . . . . 10 ((((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))))
4140ex 413 . . . . . . . . 9 (((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) ∧ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ ((𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)))))
429, 41spcimedv 3585 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ ((𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2) β†’ βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)))))
43 wlklenvp1 28864 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(Walksβ€˜πΊ)𝑝 β†’ (β™―β€˜π‘) = ((β™―β€˜π‘“) + 1))
44 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) ∧ (β™―β€˜π‘“) = 2) β†’ (β™―β€˜π‘) = ((β™―β€˜π‘“) + 1))
45 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((β™―β€˜π‘“) = 2 β†’ ((β™―β€˜π‘“) + 1) = (2 + 1))
4645adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) ∧ (β™―β€˜π‘“) = 2) β†’ ((β™―β€˜π‘“) + 1) = (2 + 1))
4744, 46eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) ∧ (β™―β€˜π‘“) = 2) β†’ (β™―β€˜π‘) = (2 + 1))
4847adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) ∧ (β™―β€˜π‘“) = 2)) β†’ (β™―β€˜π‘) = (2 + 1))
49 2p1e3 12350 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 + 1) = 3
5048, 49eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) ∧ (β™―β€˜π‘“) = 2)) β†’ (β™―β€˜π‘) = 3)
5150exp32 421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(Walksβ€˜πΊ)𝑝 β†’ ((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) β†’ ((β™―β€˜π‘“) = 2 β†’ (β™―β€˜π‘) = 3)))
5243, 51mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(Walksβ€˜πΊ)𝑝 β†’ ((β™―β€˜π‘“) = 2 β†’ (β™―β€˜π‘) = 3))
5352adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) β†’ ((β™―β€˜π‘“) = 2 β†’ (β™―β€˜π‘) = 3))
5453imp 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) β†’ (β™―β€˜π‘) = 3)
55 eqcom 2739 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Ž = (π‘β€˜0) ↔ (π‘β€˜0) = π‘Ž)
5655biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 (π‘Ž = (π‘β€˜0) β†’ (π‘β€˜0) = π‘Ž)
57 eqcom 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (π‘β€˜1) ↔ (π‘β€˜1) = 𝑏)
5857biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (π‘β€˜1) β†’ (π‘β€˜1) = 𝑏)
59 eqcom 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (π‘β€˜2) ↔ (π‘β€˜2) = 𝑐)
6059biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (π‘β€˜2) β†’ (π‘β€˜2) = 𝑐)
6156, 58, 603anim123i 1151 . . . . . . . . . . . . . . . . . . . 20 ((π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)) β†’ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜1) = 𝑏 ∧ (π‘β€˜2) = 𝑐))
6254, 61anim12i 613 . . . . . . . . . . . . . . . . . . 19 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ ((β™―β€˜π‘) = 3 ∧ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜1) = 𝑏 ∧ (π‘β€˜2) = 𝑐)))
631wlkpwrd 28863 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(Walksβ€˜πΊ)𝑝 β†’ 𝑝 ∈ Word 𝑉)
64 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) β†’ π‘Ž ∈ 𝑉)
6564anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) β†’ (π‘Ž ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)))
66 3anass 1095 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ (π‘Ž ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)))
6765, 66sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) β†’ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))
6867adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))
6963, 68anim12i 613 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) β†’ (𝑝 ∈ Word 𝑉 ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)))
7069ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (𝑝 ∈ Word 𝑉 ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)))
71 eqwrds3 14908 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ Word 𝑉 ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) β†’ (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ↔ ((β™―β€˜π‘) = 3 ∧ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜1) = 𝑏 ∧ (π‘β€˜2) = 𝑐))))
7270, 71syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ↔ ((β™―β€˜π‘) = 3 ∧ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜1) = 𝑏 ∧ (π‘β€˜2) = 𝑐))))
7362, 72mpbird 256 . . . . . . . . . . . . . . . . . 18 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ 𝑝 = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)
74 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) β†’ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)
7574ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)
7673, 75eqtr4d 2775 . . . . . . . . . . . . . . . . 17 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ 𝑝 = π‘Š)
7776breq2d 5159 . . . . . . . . . . . . . . . 16 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ↔ 𝑓(Walksβ€˜πΊ)π‘Š))
7877biimpd 228 . . . . . . . . . . . . . . 15 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)π‘Š))
79 simplr 767 . . . . . . . . . . . . . . 15 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (β™―β€˜π‘“) = 2)
8078, 79jctird 527 . . . . . . . . . . . . . 14 ((((𝑓(Walksβ€˜πΊ)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©)) ∧ (β™―β€˜π‘“) = 2) ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 β†’ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)))
8180exp41 435 . . . . . . . . . . . . 13 (𝑓(Walksβ€˜πΊ)𝑝 β†’ ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ ((β™―β€˜π‘“) = 2 β†’ ((π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)) β†’ (𝑓(Walksβ€˜πΊ)𝑝 β†’ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2))))))
8281com25 99 . . . . . . . . . . . 12 (𝑓(Walksβ€˜πΊ)𝑝 β†’ (𝑓(Walksβ€˜πΊ)𝑝 β†’ ((β™―β€˜π‘“) = 2 β†’ ((π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)) β†’ ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2))))))
8382pm2.43i 52 . . . . . . . . . . 11 (𝑓(Walksβ€˜πΊ)𝑝 β†’ ((β™―β€˜π‘“) = 2 β†’ ((π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)) β†’ ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)))))
84833imp 1111 . . . . . . . . . 10 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)))
8584com12 32 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)))
8685exlimdv 1936 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)))
8742, 86impbid 211 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ ((𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2) ↔ βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)))))
8887exbidv 1924 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ©) β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2) ↔ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2)))))
8988pm5.32da 579 . . . . 5 (((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) β†’ ((π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) ↔ (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))))))
90892rexbidva 3217 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) β†’ (βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) ↔ βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))))))
917, 90bitrid 282 . . 3 ((𝐺 ∈ UPGraph ∧ π‘Ž ∈ 𝑉) β†’ (βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) ↔ βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))))))
9291rexbidva 3176 . 2 (𝐺 ∈ UPGraph β†’ (βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)π‘Š ∧ (β™―β€˜π‘“) = 2)) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))))))
933, 6, 923bitrd 304 1 (𝐺 ∈ UPGraph β†’ (π‘Š ∈ (2 WWalksN 𝐺) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (π‘Š = βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∧ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (π‘Ž = (π‘β€˜0) ∧ 𝑏 = (π‘β€˜1) ∧ 𝑐 = (π‘β€˜2))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆƒwrex 3070  Vcvv 3474   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  2c2 12263  3c3 12264  β™―chash 14286  Word cword 14460  βŸ¨β€œcs3 14789  Vtxcvtx 28245  UPGraphcupgr 28329  Walkscwlks 28842   WWalksN cwwlksn 29069   WWalksNOn cwwlksnon 29070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-wlks 28845  df-wwlks 29073  df-wwlksn 29074  df-wwlksnon 29075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator