MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2 Structured version   Visualization version   GIF version

Theorem elwwlks2 29999
Description: A walk of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
elwwlks2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐,𝑓,𝑝   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝   𝑊,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem elwwlks2
StepHypRef Expression
1 elwwlks2.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlksnwwlksnon 29948 . . 3 (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))
32a1i 11 . 2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
41elwwlks2on 29992 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉𝑐𝑉) → (𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
543expb 1120 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑎𝑉𝑐𝑉)) → (𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
652rexbidva 3226 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
7 rexcom 3296 . . . 4 (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8 s3cli 14930 . . . . . . . . . 10 ⟨“𝑎𝑏𝑐”⟩ ∈ Word V
98a1i 11 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
10 simplr 768 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
11 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
1210, 11eqtr4d 2783 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑊 = 𝑝)
1312breq2d 5178 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊𝑓(Walks‘𝐺)𝑝))
1413biimpd 229 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊𝑓(Walks‘𝐺)𝑝))
1514com12 32 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑊 → (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(Walks‘𝐺)𝑝))
1615adantr 480 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) → (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(Walks‘𝐺)𝑝))
1716impcom 407 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → 𝑓(Walks‘𝐺)𝑝)
18 simprr 772 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (♯‘𝑓) = 2)
19 vex 3492 . . . . . . . . . . . . . . . 16 𝑎 ∈ V
20 s3fv0 14940 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
2120eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝑎 ∈ V → 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0))
2219, 21mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0))
23 fveq1 6919 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘0) = (⟨“𝑎𝑏𝑐”⟩‘0))
2422, 23eqtr4d 2783 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑎 = (𝑝‘0))
25 vex 3492 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
26 s3fv1 14941 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏)
2726eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝑏 ∈ V → 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1))
2825, 27mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1))
29 fveq1 6919 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘1) = (⟨“𝑎𝑏𝑐”⟩‘1))
3028, 29eqtr4d 2783 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑏 = (𝑝‘1))
31 vex 3492 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
32 s3fv2 14942 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
3332eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝑐 ∈ V → 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
3431, 33mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
35 fveq1 6919 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘2) = (⟨“𝑎𝑏𝑐”⟩‘2))
3634, 35eqtr4d 2783 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑐 = (𝑝‘2))
3724, 30, 363jca 1128 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))
3837adantl 481 . . . . . . . . . . . 12 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))
3938adantr 480 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))
4017, 18, 393jca 1128 . . . . . . . . . 10 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))
4140ex 412 . . . . . . . . 9 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
429, 41spcimedv 3608 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) → ∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
43 wlklenvp1 29654 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
44 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = ((♯‘𝑓) + 1))
45 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2) → ((♯‘𝑓) + 1) = (2 + 1))
4744, 46eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = (2 + 1))
4847adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2)) → (♯‘𝑝) = (2 + 1))
49 2p1e3 12435 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 + 1) = 3
5048, 49eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2)) → (♯‘𝑝) = 3)
5150exp32 420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3)))
5243, 51mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
5352adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
5453imp 406 . . . . . . . . . . . . . . . . . . . 20 (((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = 3)
55 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎)
5655biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑝‘0) → (𝑝‘0) = 𝑎)
57 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏)
5857biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑝‘1) → (𝑝‘1) = 𝑏)
59 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑝‘2) → (𝑝‘2) = 𝑐)
6156, 58, 603anim123i 1151 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
6254, 61anim12i 612 . . . . . . . . . . . . . . . . . . 19 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))
631wlkpwrd 29653 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
64 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → 𝑎𝑉)
6564anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
66 3anass 1095 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
6765, 66sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑎𝑉𝑏𝑉𝑐𝑉))
6963, 68anim12i 612 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) → (𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)))
7069ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)))
71 eqwrds3 15010 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
7270, 71syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
7362, 72mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
74 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) → 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
7574ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
7673, 75eqtr4d 2783 . . . . . . . . . . . . . . . . 17 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 = 𝑊)
7776breq2d 5178 . . . . . . . . . . . . . . . 16 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)𝑊))
7877biimpd 229 . . . . . . . . . . . . . . 15 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)𝑊))
79 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (♯‘𝑓) = 2)
8078, 79jctird 526 . . . . . . . . . . . . . 14 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝 → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8180exp41 434 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((♯‘𝑓) = 2 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → (𝑓(Walks‘𝐺)𝑝 → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))))
8281com25 99 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 → (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))))
8382pm2.43i 52 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))))
84833imp 1111 . . . . . . . . . 10 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8584com12 32 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8685exlimdv 1932 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8742, 86impbid 212 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) ↔ ∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
8887exbidv 1920 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) ↔ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
8988pm5.32da 578 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
90892rexbidva 3226 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
917, 90bitrid 283 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
9291rexbidva 3183 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
933, 6, 923bitrd 305 1 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  2c2 12348  3c3 12349  chash 14379  Word cword 14562  ⟨“cs3 14891  Vtxcvtx 29031  UPGraphcupgr 29115  Walkscwlks 29632   WWalksN cwwlksn 29859   WWalksNOn cwwlksnon 29860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-wlks 29635  df-wwlks 29863  df-wwlksn 29864  df-wwlksnon 29865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator