![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones4 | Structured version Visualization version GIF version |
Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.) |
Ref | Expression |
---|---|
sticksstones4.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones4.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
sticksstones4.3 | ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} |
sticksstones4.4 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
Ref | Expression |
---|---|
sticksstones4 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones4.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones4.2 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
3 | sticksstones4.3 | . . . . . 6 ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} | |
4 | sticksstones4.4 | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
5 | eqid 2725 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 ↦ ran 𝑝) = (𝑝 ∈ 𝐴 ↦ ran 𝑝) | |
6 | 1, 2, 3, 4, 5 | sticksstones2 41671 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵) |
7 | 1, 2, 3, 4, 5 | sticksstones3 41672 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵) |
8 | 6, 7 | jca 510 | . . . 4 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) |
9 | df-f1o 6550 | . . . 4 ⊢ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 ↔ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵) |
11 | simpl 481 | . . . . . . . . 9 ⊢ ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁)) | |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁))) |
13 | 12 | ss2abdv 4054 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) |
14 | fzfid 13965 | . . . . . . . 8 ⊢ (𝜑 → (1...𝐾) ∈ Fin) | |
15 | fzfid 13965 | . . . . . . . 8 ⊢ (𝜑 → (1...𝑁) ∈ Fin) | |
16 | mapex 8844 | . . . . . . . 8 ⊢ (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) | |
17 | 14, 15, 16 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) |
18 | ssexg 5319 | . . . . . . 7 ⊢ (({𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∧ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) | |
19 | 13, 17, 18 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
20 | 4 | eleq1i 2816 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
21 | 19, 20 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
22 | 21 | mptexd 7230 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝) ∈ V) |
23 | f1oeq1 6820 | . . . . . 6 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → (𝑔:𝐴–1-1-onto→𝐵 ↔ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵)) | |
24 | 23 | biimprd 247 | . . . . 5 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
25 | 24 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝)) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
26 | 22, 25 | spcimedv 3576 | . . 3 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵)) |
27 | 10, 26 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) |
28 | bren 8967 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) | |
29 | 27, 28 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 ∀wral 3051 {crab 3419 Vcvv 3463 ⊆ wss 3941 𝒫 cpw 4599 class class class wbr 5144 ↦ cmpt 5227 ran crn 5674 ⟶wf 6539 –1-1→wf1 6540 –onto→wfo 6541 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7413 ≈ cen 8954 Fincfn 8957 1c1 11134 < clt 11273 ℕ0cn0 12497 ...cfz 13511 ♯chash 14316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-hash 14317 |
This theorem is referenced by: sticksstones5 41674 |
Copyright terms: Public domain | W3C validator |