Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones4 Structured version   Visualization version   GIF version

Theorem sticksstones4 42132
Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.)
Hypotheses
Ref Expression
sticksstones4.1 (𝜑𝑁 ∈ ℕ0)
sticksstones4.2 (𝜑𝐾 ∈ ℕ0)
sticksstones4.3 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}
sticksstones4.4 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones4 (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑎   𝐴,𝑓   𝑥,𝐵,𝑦   𝐾,𝑎,𝑥,𝑦   𝑓,𝐾,𝑥,𝑦   𝑁,𝑎   𝑓,𝑁   𝜑,𝑎,𝑥,𝑦   𝜑,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑓,𝑎)   𝑁(𝑥,𝑦)

Proof of Theorem sticksstones4
Dummy variables 𝑝 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones4.1 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
2 sticksstones4.2 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
3 sticksstones4.3 . . . . . 6 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}
4 sticksstones4.4 . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
5 eqid 2729 . . . . . 6 (𝑝𝐴 ↦ ran 𝑝) = (𝑝𝐴 ↦ ran 𝑝)
61, 2, 3, 4, 5sticksstones2 42130 . . . . 5 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵)
71, 2, 3, 4, 5sticksstones3 42131 . . . . 5 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵)
86, 7jca 511 . . . 4 (𝜑 → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵 ∧ (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵))
9 df-f1o 6489 . . . 4 ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵 ↔ ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵 ∧ (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵))
108, 9sylibr 234 . . 3 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵)
11 simpl 482 . . . . . . . . 9 ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁))
1211a1i 11 . . . . . . . 8 (𝜑 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁)))
1312ss2abdv 4018 . . . . . . 7 (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
14 fzfid 13880 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
15 fzfid 13880 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
16 mapex 7874 . . . . . . . 8 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V)
1714, 15, 16syl2anc 584 . . . . . . 7 (𝜑 → {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V)
18 ssexg 5262 . . . . . . 7 (({𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∧ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
1913, 17, 18syl2anc 584 . . . . . 6 (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
204eleq1i 2819 . . . . . 6 (𝐴 ∈ V ↔ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
2119, 20sylibr 234 . . . . 5 (𝜑𝐴 ∈ V)
2221mptexd 7160 . . . 4 (𝜑 → (𝑝𝐴 ↦ ran 𝑝) ∈ V)
23 f1oeq1 6752 . . . . . 6 (𝑔 = (𝑝𝐴 ↦ ran 𝑝) → (𝑔:𝐴1-1-onto𝐵 ↔ (𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵))
2423biimprd 248 . . . . 5 (𝑔 = (𝑝𝐴 ↦ ran 𝑝) → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
2524adantl 481 . . . 4 ((𝜑𝑔 = (𝑝𝐴 ↦ ran 𝑝)) → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
2622, 25spcimedv 3550 . . 3 (𝜑 → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐴1-1-onto𝐵))
2710, 26mpd 15 . 2 (𝜑 → ∃𝑔 𝑔:𝐴1-1-onto𝐵)
28 bren 8882 . 2 (𝐴𝐵 ↔ ∃𝑔 𝑔:𝐴1-1-onto𝐵)
2927, 28sylibr 234 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  {crab 3394  Vcvv 3436  wss 3903  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cen 8869  Fincfn 8872  1c1 11010   < clt 11149  0cn0 12384  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  sticksstones5  42133
  Copyright terms: Public domain W3C validator