Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones4 Structured version   Visualization version   GIF version

Theorem sticksstones4 40953
Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.)
Hypotheses
Ref Expression
sticksstones4.1 (𝜑𝑁 ∈ ℕ0)
sticksstones4.2 (𝜑𝐾 ∈ ℕ0)
sticksstones4.3 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}
sticksstones4.4 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones4 (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑎   𝐴,𝑓   𝑥,𝐵,𝑦   𝐾,𝑎,𝑥,𝑦   𝑓,𝐾,𝑥,𝑦   𝑁,𝑎   𝑓,𝑁   𝜑,𝑎,𝑥,𝑦   𝜑,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑓,𝑎)   𝑁(𝑥,𝑦)

Proof of Theorem sticksstones4
Dummy variables 𝑝 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones4.1 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
2 sticksstones4.2 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
3 sticksstones4.3 . . . . . 6 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}
4 sticksstones4.4 . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
5 eqid 2732 . . . . . 6 (𝑝𝐴 ↦ ran 𝑝) = (𝑝𝐴 ↦ ran 𝑝)
61, 2, 3, 4, 5sticksstones2 40951 . . . . 5 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵)
71, 2, 3, 4, 5sticksstones3 40952 . . . . 5 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵)
86, 7jca 512 . . . 4 (𝜑 → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵 ∧ (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵))
9 df-f1o 6547 . . . 4 ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵 ↔ ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵 ∧ (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵))
108, 9sylibr 233 . . 3 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵)
11 simpl 483 . . . . . . . . 9 ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁))
1211a1i 11 . . . . . . . 8 (𝜑 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁)))
1312ss2abdv 4059 . . . . . . 7 (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
14 fzfid 13934 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
15 fzfid 13934 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
16 mapex 8822 . . . . . . . 8 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V)
1714, 15, 16syl2anc 584 . . . . . . 7 (𝜑 → {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V)
18 ssexg 5322 . . . . . . 7 (({𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∧ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
1913, 17, 18syl2anc 584 . . . . . 6 (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
204eleq1i 2824 . . . . . 6 (𝐴 ∈ V ↔ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
2119, 20sylibr 233 . . . . 5 (𝜑𝐴 ∈ V)
2221mptexd 7222 . . . 4 (𝜑 → (𝑝𝐴 ↦ ran 𝑝) ∈ V)
23 f1oeq1 6818 . . . . . 6 (𝑔 = (𝑝𝐴 ↦ ran 𝑝) → (𝑔:𝐴1-1-onto𝐵 ↔ (𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵))
2423biimprd 247 . . . . 5 (𝑔 = (𝑝𝐴 ↦ ran 𝑝) → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
2524adantl 482 . . . 4 ((𝜑𝑔 = (𝑝𝐴 ↦ ran 𝑝)) → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
2622, 25spcimedv 3585 . . 3 (𝜑 → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐴1-1-onto𝐵))
2710, 26mpd 15 . 2 (𝜑 → ∃𝑔 𝑔:𝐴1-1-onto𝐵)
28 bren 8945 . 2 (𝐴𝐵 ↔ ∃𝑔 𝑔:𝐴1-1-onto𝐵)
2927, 28sylibr 233 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wral 3061  {crab 3432  Vcvv 3474  wss 3947  𝒫 cpw 4601   class class class wbr 5147  cmpt 5230  ran crn 5676  wf 6536  1-1wf1 6537  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  cen 8932  Fincfn 8935  1c1 11107   < clt 11244  0cn0 12468  ...cfz 13480  chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  sticksstones5  40954
  Copyright terms: Public domain W3C validator