| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones4 | Structured version Visualization version GIF version | ||
| Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.) |
| Ref | Expression |
|---|---|
| sticksstones4.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones4.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| sticksstones4.3 | ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} |
| sticksstones4.4 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| Ref | Expression |
|---|---|
| sticksstones4 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones4.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | sticksstones4.2 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 3 | sticksstones4.3 | . . . . . 6 ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} | |
| 4 | sticksstones4.4 | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 ↦ ran 𝑝) = (𝑝 ∈ 𝐴 ↦ ran 𝑝) | |
| 6 | 1, 2, 3, 4, 5 | sticksstones2 42165 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵) |
| 7 | 1, 2, 3, 4, 5 | sticksstones3 42166 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵) |
| 8 | 6, 7 | jca 511 | . . . 4 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) |
| 9 | df-f1o 6543 | . . . 4 ⊢ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 ↔ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵) |
| 11 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁)) | |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁))) |
| 13 | 12 | ss2abdv 4046 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) |
| 14 | fzfid 13996 | . . . . . . . 8 ⊢ (𝜑 → (1...𝐾) ∈ Fin) | |
| 15 | fzfid 13996 | . . . . . . . 8 ⊢ (𝜑 → (1...𝑁) ∈ Fin) | |
| 16 | mapex 7942 | . . . . . . . 8 ⊢ (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) |
| 18 | ssexg 5298 | . . . . . . 7 ⊢ (({𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∧ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) | |
| 19 | 13, 17, 18 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
| 20 | 4 | eleq1i 2826 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
| 21 | 19, 20 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 22 | 21 | mptexd 7221 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝) ∈ V) |
| 23 | f1oeq1 6811 | . . . . . 6 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → (𝑔:𝐴–1-1-onto→𝐵 ↔ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵)) | |
| 24 | 23 | biimprd 248 | . . . . 5 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
| 25 | 24 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝)) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
| 26 | 22, 25 | spcimedv 3579 | . . 3 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵)) |
| 27 | 10, 26 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) |
| 28 | bren 8974 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) | |
| 29 | 27, 28 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∀wral 3052 {crab 3420 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ⟶wf 6532 –1-1→wf1 6533 –onto→wfo 6534 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ≈ cen 8961 Fincfn 8964 1c1 11135 < clt 11274 ℕ0cn0 12506 ...cfz 13529 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: sticksstones5 42168 |
| Copyright terms: Public domain | W3C validator |