Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones4 Structured version   Visualization version   GIF version

Theorem sticksstones4 42130
Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.)
Hypotheses
Ref Expression
sticksstones4.1 (𝜑𝑁 ∈ ℕ0)
sticksstones4.2 (𝜑𝐾 ∈ ℕ0)
sticksstones4.3 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}
sticksstones4.4 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones4 (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑎   𝐴,𝑓   𝑥,𝐵,𝑦   𝐾,𝑎,𝑥,𝑦   𝑓,𝐾,𝑥,𝑦   𝑁,𝑎   𝑓,𝑁   𝜑,𝑎,𝑥,𝑦   𝜑,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑓,𝑎)   𝑁(𝑥,𝑦)

Proof of Theorem sticksstones4
Dummy variables 𝑝 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones4.1 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
2 sticksstones4.2 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
3 sticksstones4.3 . . . . . 6 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}
4 sticksstones4.4 . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
5 eqid 2729 . . . . . 6 (𝑝𝐴 ↦ ran 𝑝) = (𝑝𝐴 ↦ ran 𝑝)
61, 2, 3, 4, 5sticksstones2 42128 . . . . 5 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵)
71, 2, 3, 4, 5sticksstones3 42129 . . . . 5 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵)
86, 7jca 511 . . . 4 (𝜑 → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵 ∧ (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵))
9 df-f1o 6506 . . . 4 ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵 ↔ ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1𝐵 ∧ (𝑝𝐴 ↦ ran 𝑝):𝐴onto𝐵))
108, 9sylibr 234 . . 3 (𝜑 → (𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵)
11 simpl 482 . . . . . . . . 9 ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁))
1211a1i 11 . . . . . . . 8 (𝜑 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁)))
1312ss2abdv 4026 . . . . . . 7 (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
14 fzfid 13914 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
15 fzfid 13914 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
16 mapex 7897 . . . . . . . 8 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V)
1714, 15, 16syl2anc 584 . . . . . . 7 (𝜑 → {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V)
18 ssexg 5273 . . . . . . 7 (({𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∧ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
1913, 17, 18syl2anc 584 . . . . . 6 (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
204eleq1i 2819 . . . . . 6 (𝐴 ∈ V ↔ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ∈ V)
2119, 20sylibr 234 . . . . 5 (𝜑𝐴 ∈ V)
2221mptexd 7180 . . . 4 (𝜑 → (𝑝𝐴 ↦ ran 𝑝) ∈ V)
23 f1oeq1 6770 . . . . . 6 (𝑔 = (𝑝𝐴 ↦ ran 𝑝) → (𝑔:𝐴1-1-onto𝐵 ↔ (𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵))
2423biimprd 248 . . . . 5 (𝑔 = (𝑝𝐴 ↦ ran 𝑝) → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
2524adantl 481 . . . 4 ((𝜑𝑔 = (𝑝𝐴 ↦ ran 𝑝)) → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
2622, 25spcimedv 3558 . . 3 (𝜑 → ((𝑝𝐴 ↦ ran 𝑝):𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐴1-1-onto𝐵))
2710, 26mpd 15 . 2 (𝜑 → ∃𝑔 𝑔:𝐴1-1-onto𝐵)
28 bren 8905 . 2 (𝐴𝐵 ↔ ∃𝑔 𝑔:𝐴1-1-onto𝐵)
2927, 28sylibr 234 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  {crab 3402  Vcvv 3444  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  ran crn 5632  wf 6495  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cen 8892  Fincfn 8895  1c1 11045   < clt 11184  0cn0 12418  ...cfz 13444  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  sticksstones5  42131
  Copyright terms: Public domain W3C validator