![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones4 | Structured version Visualization version GIF version |
Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.) |
Ref | Expression |
---|---|
sticksstones4.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones4.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
sticksstones4.3 | ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} |
sticksstones4.4 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
Ref | Expression |
---|---|
sticksstones4 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones4.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones4.2 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
3 | sticksstones4.3 | . . . . . 6 ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} | |
4 | sticksstones4.4 | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
5 | eqid 2727 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 ↦ ran 𝑝) = (𝑝 ∈ 𝐴 ↦ ran 𝑝) | |
6 | 1, 2, 3, 4, 5 | sticksstones2 41551 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵) |
7 | 1, 2, 3, 4, 5 | sticksstones3 41552 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵) |
8 | 6, 7 | jca 511 | . . . 4 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) |
9 | df-f1o 6549 | . . . 4 ⊢ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 ↔ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵) |
11 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁)) | |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁))) |
13 | 12 | ss2abdv 4056 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) |
14 | fzfid 13962 | . . . . . . . 8 ⊢ (𝜑 → (1...𝐾) ∈ Fin) | |
15 | fzfid 13962 | . . . . . . . 8 ⊢ (𝜑 → (1...𝑁) ∈ Fin) | |
16 | mapex 8842 | . . . . . . . 8 ⊢ (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) | |
17 | 14, 15, 16 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) |
18 | ssexg 5317 | . . . . . . 7 ⊢ (({𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∧ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) | |
19 | 13, 17, 18 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
20 | 4 | eleq1i 2819 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
21 | 19, 20 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
22 | 21 | mptexd 7230 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝) ∈ V) |
23 | f1oeq1 6821 | . . . . . 6 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → (𝑔:𝐴–1-1-onto→𝐵 ↔ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵)) | |
24 | 23 | biimprd 247 | . . . . 5 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
25 | 24 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝)) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
26 | 22, 25 | spcimedv 3580 | . . 3 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵)) |
27 | 10, 26 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) |
28 | bren 8965 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) | |
29 | 27, 28 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2704 ∀wral 3056 {crab 3427 Vcvv 3469 ⊆ wss 3944 𝒫 cpw 4598 class class class wbr 5142 ↦ cmpt 5225 ran crn 5673 ⟶wf 6538 –1-1→wf1 6539 –onto→wfo 6540 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ≈ cen 8952 Fincfn 8955 1c1 11131 < clt 11270 ℕ0cn0 12494 ...cfz 13508 ♯chash 14313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 |
This theorem is referenced by: sticksstones5 41554 |
Copyright terms: Public domain | W3C validator |