![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones4 | Structured version Visualization version GIF version |
Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.) |
Ref | Expression |
---|---|
sticksstones4.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones4.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
sticksstones4.3 | ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} |
sticksstones4.4 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
Ref | Expression |
---|---|
sticksstones4 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones4.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones4.2 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
3 | sticksstones4.3 | . . . . . 6 ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} | |
4 | sticksstones4.4 | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
5 | eqid 2732 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 ↦ ran 𝑝) = (𝑝 ∈ 𝐴 ↦ ran 𝑝) | |
6 | 1, 2, 3, 4, 5 | sticksstones2 40951 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵) |
7 | 1, 2, 3, 4, 5 | sticksstones3 40952 | . . . . 5 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵) |
8 | 6, 7 | jca 512 | . . . 4 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) |
9 | df-f1o 6547 | . . . 4 ⊢ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 ↔ ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1→𝐵 ∧ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–onto→𝐵)) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵) |
11 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁)) | |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) → 𝑓:(1...𝐾)⟶(1...𝑁))) |
13 | 12 | ss2abdv 4059 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) |
14 | fzfid 13934 | . . . . . . . 8 ⊢ (𝜑 → (1...𝐾) ∈ Fin) | |
15 | fzfid 13934 | . . . . . . . 8 ⊢ (𝜑 → (1...𝑁) ∈ Fin) | |
16 | mapex 8822 | . . . . . . . 8 ⊢ (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) | |
17 | 14, 15, 16 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) |
18 | ssexg 5322 | . . . . . . 7 ⊢ (({𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∧ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} ∈ V) → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) | |
19 | 13, 17, 18 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
20 | 4 | eleq1i 2824 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ∈ V) |
21 | 19, 20 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
22 | 21 | mptexd 7222 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝐴 ↦ ran 𝑝) ∈ V) |
23 | f1oeq1 6818 | . . . . . 6 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → (𝑔:𝐴–1-1-onto→𝐵 ↔ (𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵)) | |
24 | 23 | biimprd 247 | . . . . 5 ⊢ (𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
25 | 24 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 = (𝑝 ∈ 𝐴 ↦ ran 𝑝)) → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → 𝑔:𝐴–1-1-onto→𝐵)) |
26 | 22, 25 | spcimedv 3585 | . . 3 ⊢ (𝜑 → ((𝑝 ∈ 𝐴 ↦ ran 𝑝):𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵)) |
27 | 10, 26 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) |
28 | bren 8945 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) | |
29 | 27, 28 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∀wral 3061 {crab 3432 Vcvv 3474 ⊆ wss 3947 𝒫 cpw 4601 class class class wbr 5147 ↦ cmpt 5230 ran crn 5676 ⟶wf 6536 –1-1→wf1 6537 –onto→wfo 6538 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ≈ cen 8932 Fincfn 8935 1c1 11107 < clt 11244 ℕ0cn0 12468 ...cfz 13480 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 |
This theorem is referenced by: sticksstones5 40954 |
Copyright terms: Public domain | W3C validator |