MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem1 28992
Description: Lemma 1 for clwlkclwwlk 28995. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem1 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ βˆƒπ‘“((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))))
Distinct variable groups:   𝑓,𝐸,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑓,𝑉,𝑖

Proof of Theorem clwlkclwwlklem1
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ovex 7394 . . 3 (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∈ V
2 mptexg 7175 . . 3 ((0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∈ V β†’ (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ V)
31, 2mp1i 13 . 2 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ V)
4 eqid 2733 . . . . 5 (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))
54clwlkclwwlklem2a 28991 . . . 4 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ (((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))(πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))))))))
65adantr 482 . . 3 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ (((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))(πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))))))))
7 eleq1 2822 . . . . . . 7 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (𝑓 ∈ Word dom 𝐸 ↔ (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ Word dom 𝐸))
8 fveq2 6846 . . . . . . . . 9 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (β™―β€˜π‘“) = (β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))
98oveq2d 7377 . . . . . . . 8 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (0...(β™―β€˜π‘“)) = (0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))))))
109feq2d 6658 . . . . . . 7 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ↔ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))βŸΆπ‘‰))
118oveq2d 7377 . . . . . . . 8 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))))))
12 fveq1 6845 . . . . . . . . 9 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (π‘“β€˜π‘–) = ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–))
1312fveqeq2d 6854 . . . . . . . 8 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ ((πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ (πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
1411, 13raleqbidv 3318 . . . . . . 7 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))(πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
157, 10, 143anbi123d 1437 . . . . . 6 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ↔ ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))(πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
16 2fveq3 6851 . . . . . . 7 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (π‘ƒβ€˜(β™―β€˜π‘“)) = (π‘ƒβ€˜(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))))))
1716eqeq2d 2744 . . . . . 6 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ ((π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)) ↔ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))))
1815, 17anbi12d 632 . . . . 5 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) ↔ (((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))(πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))))))))
1918imbi2d 341 . . . 4 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) β†’ ((((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) ↔ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ (((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))(πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))))))
2019adantl 483 . . 3 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))) β†’ ((((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) ↔ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ (((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)}))) ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))(πΈβ€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))))))))
216, 20mpbird 257 . 2 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))))
223, 21spcimedv 3556 1 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ βˆƒπ‘“((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆ€wral 3061  Vcvv 3447  ifcif 4490  {cpr 4592   class class class wbr 5109   ↦ cmpt 5192  β—‘ccnv 5636  dom cdm 5637  ran crn 5638  βŸΆwf 6496  β€“1-1β†’wf1 6497  β€˜cfv 6500  (class class class)co 7361  0cc0 11059  1c1 11060   + caddc 11062   < clt 11197   ≀ cle 11198   βˆ’ cmin 11393  2c2 12216  ...cfz 13433  ..^cfzo 13576  β™―chash 14239  Word cword 14411  lastSclsw 14459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577  df-hash 14240  df-word 14412  df-lsw 14460
This theorem is referenced by:  clwlkclwwlklem3  28994
  Copyright terms: Public domain W3C validator