MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2 29874
Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks2 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlks2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlkbp 29840 . . 3 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))
3 eqid 2733 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
41, 3iswwlks 29835 . . . 4 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5 ovex 7388 . . . . . . . . . . . . . . 15 (0..^((♯‘𝑃) − 1)) ∈ V
6 mptexg 7164 . . . . . . . . . . . . . . 15 ((0..^((♯‘𝑃) − 1)) ∈ V → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
75, 6mp1i 13 . . . . . . . . . . . . . 14 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
8 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝐺 ∈ USPGraph)
9 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝑃 ∈ Word (Vtx‘𝐺))
10 hashge1 14303 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → 1 ≤ (♯‘𝑃))
1110ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → 1 ≤ (♯‘𝑃))
1211adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 1 ≤ (♯‘𝑃))
138, 9, 123jca 1128 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
1413adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
15 edgval 29048 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1716eleq2d 2819 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1817ralbidv 3156 . . . . . . . . . . . . . . . . 17 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1918biimpd 229 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
20 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21 eqid 2733 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = (iEdg‘𝐺)
2220, 21wlkiswwlks2lem6 29873 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2314, 19, 22sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
24 eleq1 2821 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺)))
25 fveq2 6831 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (♯‘𝑓) = (♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))
2625oveq2d 7371 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0...(♯‘𝑓)) = (0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
2726feq2d 6643 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺)))
2825oveq2d 7371 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0..^(♯‘𝑓)) = (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
29 fveq1 6830 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓𝑖) = ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖))
3029fveqeq2d 6839 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3128, 30raleqbidv 3313 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3224, 27, 313anbi123d 1438 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3332imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3433adantl 481 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3523, 34mpbird 257 . . . . . . . . . . . . . 14 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
367, 35spcimedv 3546 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3736ex 412 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3837com23 86 . . . . . . . . . . 11 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
39383impia 1117 . . . . . . . . . 10 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4039expd 415 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
4140impcom 407 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4241imp 406 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
43 uspgrupgr 29177 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
441, 21upgriswlk 29640 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4543, 44syl 17 . . . . . . . . 9 (𝐺 ∈ USPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4645adantl 481 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4746exbidv 1922 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4842, 47mpbird 257 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
4948ex 412 . . . . 5 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5049ex 412 . . . 4 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
514, 50biimtrid 242 . . 3 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
522, 51mpcom 38 . 2 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5352com12 32 1 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  Vcvv 3437  c0 4282  {cpr 4579   class class class wbr 5095  cmpt 5176  ccnv 5620  dom cdm 5621  ran crn 5622  wf 6485  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020  cle 11158  cmin 11355  ...cfz 13414  ..^cfzo 13561  chash 14244  Word cword 14427  Vtxcvtx 28995  iEdgciedg 28996  Edgcedg 29046  UPGraphcupgr 29079  USPGraphcuspgr 29147  Walkscwlks 29596  WWalkscwwlks 29824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-edg 29047  df-uhgr 29057  df-upgr 29081  df-uspgr 29149  df-wlks 29599  df-wwlks 29829
This theorem is referenced by:  wlkiswwlks  29875  wlklnwwlkln2  29882
  Copyright terms: Public domain W3C validator