MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2 27661
Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks2 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlks2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlkbp 27627 . . 3 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))
3 eqid 2798 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
41, 3iswwlks 27622 . . . 4 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5 ovex 7168 . . . . . . . . . . . . . . 15 (0..^((♯‘𝑃) − 1)) ∈ V
6 mptexg 6961 . . . . . . . . . . . . . . 15 ((0..^((♯‘𝑃) − 1)) ∈ V → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
75, 6mp1i 13 . . . . . . . . . . . . . 14 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
8 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝐺 ∈ USPGraph)
9 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝑃 ∈ Word (Vtx‘𝐺))
10 hashge1 13746 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → 1 ≤ (♯‘𝑃))
1110ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → 1 ≤ (♯‘𝑃))
1211adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 1 ≤ (♯‘𝑃))
138, 9, 123jca 1125 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
1413adantr 484 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
15 edgval 26842 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1716eleq2d 2875 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1817ralbidv 3162 . . . . . . . . . . . . . . . . 17 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1918biimpd 232 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
20 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21 eqid 2798 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = (iEdg‘𝐺)
2220, 21wlkiswwlks2lem6 27660 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2314, 19, 22sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
24 eleq1 2877 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺)))
25 fveq2 6645 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (♯‘𝑓) = (♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))
2625oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0...(♯‘𝑓)) = (0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
2726feq2d 6473 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺)))
2825oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0..^(♯‘𝑓)) = (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
29 fveq1 6644 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓𝑖) = ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖))
3029fveqeq2d 6653 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3128, 30raleqbidv 3354 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3224, 27, 313anbi123d 1433 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3332imbi2d 344 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3433adantl 485 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3523, 34mpbird 260 . . . . . . . . . . . . . 14 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
367, 35spcimedv 3542 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3736ex 416 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3837com23 86 . . . . . . . . . . 11 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
39383impia 1114 . . . . . . . . . 10 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4039expd 419 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
4140impcom 411 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4241imp 410 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
43 uspgrupgr 26969 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
441, 21upgriswlk 27430 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4543, 44syl 17 . . . . . . . . 9 (𝐺 ∈ USPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4645adantl 485 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4746exbidv 1922 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4842, 47mpbird 260 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
4948ex 416 . . . . 5 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5049ex 416 . . . 4 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
514, 50syl5bi 245 . . 3 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
522, 51mpcom 38 . 2 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5352com12 32 1 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  Vcvv 3441  c0 4243  {cpr 4527   class class class wbr 5030  cmpt 5110  ccnv 5518  dom cdm 5519  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cmin 10859  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UPGraphcupgr 26873  USPGraphcuspgr 26941  Walkscwlks 27386  WWalkscwwlks 27611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-uspgr 26943  df-wlks 27389  df-wwlks 27616
This theorem is referenced by:  wlkiswwlks  27662  wlklnwwlkln2  27669
  Copyright terms: Public domain W3C validator