MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2 29854
Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks2 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlks2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlkbp 29820 . . 3 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))
3 eqid 2731 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
41, 3iswwlks 29815 . . . 4 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5 ovex 7379 . . . . . . . . . . . . . . 15 (0..^((♯‘𝑃) − 1)) ∈ V
6 mptexg 7155 . . . . . . . . . . . . . . 15 ((0..^((♯‘𝑃) − 1)) ∈ V → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
75, 6mp1i 13 . . . . . . . . . . . . . 14 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
8 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝐺 ∈ USPGraph)
9 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝑃 ∈ Word (Vtx‘𝐺))
10 hashge1 14296 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → 1 ≤ (♯‘𝑃))
1110ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → 1 ≤ (♯‘𝑃))
1211adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 1 ≤ (♯‘𝑃))
138, 9, 123jca 1128 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
1413adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
15 edgval 29028 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1716eleq2d 2817 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1817ralbidv 3155 . . . . . . . . . . . . . . . . 17 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1918biimpd 229 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
20 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21 eqid 2731 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = (iEdg‘𝐺)
2220, 21wlkiswwlks2lem6 29853 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2314, 19, 22sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
24 eleq1 2819 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺)))
25 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (♯‘𝑓) = (♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))
2625oveq2d 7362 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0...(♯‘𝑓)) = (0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
2726feq2d 6635 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺)))
2825oveq2d 7362 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0..^(♯‘𝑓)) = (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
29 fveq1 6821 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓𝑖) = ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖))
3029fveqeq2d 6830 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3128, 30raleqbidv 3312 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3224, 27, 313anbi123d 1438 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3332imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3433adantl 481 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3523, 34mpbird 257 . . . . . . . . . . . . . 14 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
367, 35spcimedv 3550 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3736ex 412 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3837com23 86 . . . . . . . . . . 11 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
39383impia 1117 . . . . . . . . . 10 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4039expd 415 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
4140impcom 407 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4241imp 406 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
43 uspgrupgr 29157 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
441, 21upgriswlk 29620 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4543, 44syl 17 . . . . . . . . 9 (𝐺 ∈ USPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4645adantl 481 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4746exbidv 1922 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4842, 47mpbird 257 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
4948ex 412 . . . . 5 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5049ex 412 . . . 4 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
514, 50biimtrid 242 . . 3 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
522, 51mpcom 38 . 2 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5352com12 32 1 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  c0 4283  {cpr 4578   class class class wbr 5091  cmpt 5172  ccnv 5615  dom cdm 5616  ran crn 5617  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009  cle 11147  cmin 11344  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  UPGraphcupgr 29059  USPGraphcuspgr 29127  Walkscwlks 29576  WWalkscwwlks 29804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29027  df-uhgr 29037  df-upgr 29061  df-uspgr 29129  df-wlks 29579  df-wwlks 29809
This theorem is referenced by:  wlkiswwlks  29855  wlklnwwlkln2  29862
  Copyright terms: Public domain W3C validator