Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | 1 | wwlkbp 28107 |
. . 3
⊢ (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺))) |
3 | | eqid 2738 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
4 | 1, 3 | iswwlks 28102 |
. . . 4
⊢ (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
5 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢
(0..^((♯‘𝑃) − 1)) ∈ V |
6 | | mptexg 7079 |
. . . . . . . . . . . . . . 15
⊢
((0..^((♯‘𝑃) − 1)) ∈ V → (𝑥 ∈
(0..^((♯‘𝑃)
− 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ V) |
7 | 5, 6 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝑥 ∈
(0..^((♯‘𝑃)
− 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ V) |
8 | | simprr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝐺 ∈ USPGraph) |
9 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝑃 ∈ Word (Vtx‘𝐺)) |
10 | | hashge1 14032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → 1 ≤
(♯‘𝑃)) |
11 | 10 | ancoms 458 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → 1 ≤
(♯‘𝑃)) |
12 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 1 ≤
(♯‘𝑃)) |
13 | 8, 9, 12 | 3jca 1126 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃))) |
14 | 13 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃))) |
15 | | edgval 27322 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
16 | 15 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
17 | 16 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))) |
18 | 17 | ralbidv 3120 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))) |
19 | 18 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))) |
20 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
(0..^((♯‘𝑃)
− 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
21 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
22 | 20, 21 | wlkiswwlks2lem6 28140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑃)) →
(∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^(♯‘(𝑥
∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
23 | 14, 19, 22 | sylsyld 61 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^(♯‘(𝑥
∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
24 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺))) |
25 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (♯‘𝑓) = (♯‘(𝑥 ∈
(0..^((♯‘𝑃)
− 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})))) |
26 | 25 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (0...(♯‘𝑓)) = (0...(♯‘(𝑥 ∈
(0..^((♯‘𝑃)
− 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))) |
27 | 26 | feq2d 6570 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺))) |
28 | 25 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (0..^(♯‘𝑓)) = (0..^(♯‘(𝑥 ∈
(0..^((♯‘𝑃)
− 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))) |
29 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓‘𝑖) = ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) |
30 | 29 | fveqeq2d 6764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
31 | 28, 30 | raleqbidv 3327 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈
(0..^((♯‘𝑃)
− 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
32 | 24, 27, 31 | 3anbi123d 1434 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ↔ ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^(♯‘(𝑥
∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
33 | 32 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^(♯‘(𝑥
∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})))) |
34 | 33 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → ((∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^(♯‘(𝑥
∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})))) |
35 | 23, 34 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡(iEdg‘𝐺)‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
36 | 7, 35 | spcimedv 3524 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
37 | 36 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → (∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})))) |
38 | 37 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})))) |
39 | 38 | 3impia 1115 |
. . . . . . . . . 10
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
40 | 39 | expd 415 |
. . . . . . . . 9
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})))) |
41 | 40 | impcom 407 |
. . . . . . . 8
⊢ (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
42 | 41 | imp 406 |
. . . . . . 7
⊢ ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
43 | | uspgrupgr 27449 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UPGraph) |
44 | 1, 21 | upgriswlk 27910 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
45 | 43, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝐺 ∈ USPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
46 | 45 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
47 | 46 | exbidv 1925 |
. . . . . . 7
⊢ ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
48 | 42, 47 | mpbird 256 |
. . . . . 6
⊢ ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓 𝑓(Walks‘𝐺)𝑃) |
49 | 48 | ex 412 |
. . . . 5
⊢ (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)) |
50 | 49 | ex 412 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))) |
51 | 4, 50 | syl5bi 241 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))) |
52 | 2, 51 | mpcom 38 |
. 2
⊢ (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)) |
53 | 52 | com12 32 |
1
⊢ (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)) |