Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’
(VtxβπΊ) =
(VtxβπΊ) |
2 | 1 | wwlkbp 29084 |
. . 3
β’ (π β (WWalksβπΊ) β (πΊ β V β§ π β Word (VtxβπΊ))) |
3 | | eqid 2732 |
. . . . 5
β’
(EdgβπΊ) =
(EdgβπΊ) |
4 | 1, 3 | iswwlks 29079 |
. . . 4
β’ (π β (WWalksβπΊ) β (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) |
5 | | ovex 7438 |
. . . . . . . . . . . . . . 15
β’
(0..^((β―βπ) β 1)) β V |
6 | | mptexg 7219 |
. . . . . . . . . . . . . . 15
β’
((0..^((β―βπ) β 1)) β V β (π₯ β
(0..^((β―βπ)
β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β V) |
7 | 5, 6 | mp1i 13 |
. . . . . . . . . . . . . 14
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β (π₯ β
(0..^((β―βπ)
β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β V) |
8 | | simprr 771 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β πΊ β USPGraph) |
9 | | simplr 767 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β π β Word (VtxβπΊ)) |
10 | | hashge1 14345 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Word (VtxβπΊ) β§ π β β
) β 1 β€
(β―βπ)) |
11 | 10 | ancoms 459 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β β
β§ π β Word (VtxβπΊ)) β 1 β€
(β―βπ)) |
12 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β 1 β€
(β―βπ)) |
13 | 8, 9, 12 | 3jca 1128 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β (πΊ β USPGraph β§ π β Word (VtxβπΊ) β§ 1 β€ (β―βπ))) |
14 | 13 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β (πΊ β USPGraph β§ π β Word (VtxβπΊ) β§ 1 β€ (β―βπ))) |
15 | | edgval 28298 |
. . . . . . . . . . . . . . . . . . . 20
β’
(EdgβπΊ) = ran
(iEdgβπΊ) |
16 | 15 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β (EdgβπΊ) = ran (iEdgβπΊ)) |
17 | 16 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β ({(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ))) |
18 | 17 | ralbidv 3177 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β (βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ))) |
19 | 18 | biimpd 228 |
. . . . . . . . . . . . . . . 16
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β (βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ))) |
20 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ β
(0..^((β―βπ)
β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) |
21 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
22 | 20, 21 | wlkiswwlks2lem6 29117 |
. . . . . . . . . . . . . . . 16
β’ ((πΊ β USPGraph β§ π β Word (VtxβπΊ) β§ 1 β€
(β―βπ)) β
(βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ) β ((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β Word dom (iEdgβπΊ) β§ π:(0...(β―β(π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))βΆ(VtxβπΊ) β§ βπ β
(0..^(β―β(π₯
β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))((iEdgβπΊ)β((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) = {(πβπ), (πβ(π + 1))}))) |
23 | 14, 19, 22 | sylsyld 61 |
. . . . . . . . . . . . . . 15
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β (βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β ((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β Word dom (iEdgβπΊ) β§ π:(0...(β―β(π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))βΆ(VtxβπΊ) β§ βπ β
(0..^(β―β(π₯
β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))((iEdgβπΊ)β((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) = {(πβπ), (πβ(π + 1))}))) |
24 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . 18
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (π β Word dom (iEdgβπΊ) β (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β Word dom (iEdgβπΊ))) |
25 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (β―βπ) = (β―β(π₯ β
(0..^((β―βπ)
β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})))) |
26 | 25 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (0...(β―βπ)) = (0...(β―β(π₯ β
(0..^((β―βπ)
β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))) |
27 | 26 | feq2d 6700 |
. . . . . . . . . . . . . . . . . 18
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (π:(0...(β―βπ))βΆ(VtxβπΊ) β π:(0...(β―β(π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))βΆ(VtxβπΊ))) |
28 | 25 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (0..^(β―βπ)) = (0..^(β―β(π₯ β
(0..^((β―βπ)
β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))) |
29 | | fveq1 6887 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (πβπ) = ((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) |
30 | 29 | fveqeq2d 6896 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) = {(πβπ), (πβ(π + 1))})) |
31 | 28, 30 | raleqbidv 3342 |
. . . . . . . . . . . . . . . . . 18
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β (βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))} β βπ β (0..^(β―β(π₯ β
(0..^((β―βπ)
β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))((iEdgβπΊ)β((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) = {(πβπ), (πβ(π + 1))})) |
32 | 24, 27, 31 | 3anbi123d 1436 |
. . . . . . . . . . . . . . . . 17
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β ((π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β ((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β Word dom (iEdgβπΊ) β§ π:(0...(β―β(π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))βΆ(VtxβπΊ) β§ βπ β
(0..^(β―β(π₯
β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))((iEdgβπΊ)β((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) = {(πβπ), (πβ(π + 1))}))) |
33 | 32 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
β’ (π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β ((βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) β (βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β ((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β Word dom (iEdgβπΊ) β§ π:(0...(β―β(π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))βΆ(VtxβπΊ) β§ βπ β
(0..^(β―β(π₯
β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))((iEdgβπΊ)β((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) = {(πβπ), (πβ(π + 1))})))) |
34 | 33 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β ((βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) β (βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β ((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))})) β Word dom (iEdgβπΊ) β§ π:(0...(β―β(π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))βΆ(VtxβπΊ) β§ βπ β
(0..^(β―β(π₯
β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))))((iEdgβπΊ)β((π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))βπ)) = {(πβπ), (πβ(π + 1))})))) |
35 | 23, 34 | mpbird 256 |
. . . . . . . . . . . . . 14
β’ ((((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β§ π = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘(iEdgβπΊ)β{(πβπ₯), (πβ(π₯ + 1))}))) β (βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
36 | 7, 35 | spcimedv 3585 |
. . . . . . . . . . . . 13
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ ((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph)) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
37 | 36 | ex 413 |
. . . . . . . . . . . 12
β’ ((π β β
β§ π β Word (VtxβπΊ)) β (((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})))) |
38 | 37 | com23 86 |
. . . . . . . . . . 11
β’ ((π β β
β§ π β Word (VtxβπΊ)) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β (((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph) β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})))) |
39 | 38 | 3impia 1117 |
. . . . . . . . . 10
β’ ((π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ)) β (((πΊ β V β§ π β Word (VtxβπΊ)) β§ πΊ β USPGraph) β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
40 | 39 | expd 416 |
. . . . . . . . 9
β’ ((π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ)) β ((πΊ β V β§ π β Word (VtxβπΊ)) β (πΊ β USPGraph β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})))) |
41 | 40 | impcom 408 |
. . . . . . . 8
β’ (((πΊ β V β§ π β Word (VtxβπΊ)) β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β (πΊ β USPGraph β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
42 | 41 | imp 407 |
. . . . . . 7
β’ ((((πΊ β V β§ π β Word (VtxβπΊ)) β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ πΊ β USPGraph) β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) |
43 | | uspgrupgr 28425 |
. . . . . . . . . 10
β’ (πΊ β USPGraph β πΊ β
UPGraph) |
44 | 1, 21 | upgriswlk 28887 |
. . . . . . . . . 10
β’ (πΊ β UPGraph β (π(WalksβπΊ)π β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
45 | 43, 44 | syl 17 |
. . . . . . . . 9
β’ (πΊ β USPGraph β (π(WalksβπΊ)π β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
46 | 45 | adantl 482 |
. . . . . . . 8
β’ ((((πΊ β V β§ π β Word (VtxβπΊ)) β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ πΊ β USPGraph) β (π(WalksβπΊ)π β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
47 | 46 | exbidv 1924 |
. . . . . . 7
β’ ((((πΊ β V β§ π β Word (VtxβπΊ)) β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ πΊ β USPGraph) β (βπ π(WalksβπΊ)π β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
48 | 42, 47 | mpbird 256 |
. . . . . 6
β’ ((((πΊ β V β§ π β Word (VtxβπΊ)) β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ πΊ β USPGraph) β βπ π(WalksβπΊ)π) |
49 | 48 | ex 413 |
. . . . 5
β’ (((πΊ β V β§ π β Word (VtxβπΊ)) β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β (πΊ β USPGraph β βπ π(WalksβπΊ)π)) |
50 | 49 | ex 413 |
. . . 4
β’ ((πΊ β V β§ π β Word (VtxβπΊ)) β ((π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ)) β (πΊ β USPGraph β βπ π(WalksβπΊ)π))) |
51 | 4, 50 | biimtrid 241 |
. . 3
β’ ((πΊ β V β§ π β Word (VtxβπΊ)) β (π β (WWalksβπΊ) β (πΊ β USPGraph β βπ π(WalksβπΊ)π))) |
52 | 2, 51 | mpcom 38 |
. 2
β’ (π β (WWalksβπΊ) β (πΊ β USPGraph β βπ π(WalksβπΊ)π)) |
53 | 52 | com12 32 |
1
β’ (πΊ β USPGraph β (π β (WWalksβπΊ) β βπ π(WalksβπΊ)π)) |