MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2 29660
Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks2 (𝐺 ∈ USPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlks2
Dummy variables 𝑖 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . 4 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
21wwlkbp 29626 . . 3 (𝑃 ∈ (WWalksβ€˜πΊ) β†’ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)))
3 eqid 2727 . . . . 5 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
41, 3iswwlks 29621 . . . 4 (𝑃 ∈ (WWalksβ€˜πΊ) ↔ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
5 ovex 7447 . . . . . . . . . . . . . . 15 (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∈ V
6 mptexg 7227 . . . . . . . . . . . . . . 15 ((0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∈ V β†’ (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ V)
75, 6mp1i 13 . . . . . . . . . . . . . 14 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) β†’ (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ V)
8 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) β†’ 𝐺 ∈ USPGraph)
9 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) β†’ 𝑃 ∈ Word (Vtxβ€˜πΊ))
10 hashge1 14366 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑃 β‰  βˆ…) β†’ 1 ≀ (β™―β€˜π‘ƒ))
1110ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ 1 ≀ (β™―β€˜π‘ƒ))
1211adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) β†’ 1 ≀ (β™―β€˜π‘ƒ))
138, 9, 123jca 1126 . . . . . . . . . . . . . . . . 17 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) β†’ (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ 1 ≀ (β™―β€˜π‘ƒ)))
1413adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ 1 ≀ (β™―β€˜π‘ƒ)))
15 edgval 28836 . . . . . . . . . . . . . . . . . . . 20 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ))
1716eleq2d 2814 . . . . . . . . . . . . . . . . . 18 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ)))
1817ralbidv 3172 . . . . . . . . . . . . . . . . 17 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ)))
1918biimpd 228 . . . . . . . . . . . . . . . 16 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ)))
20 eqid 2727 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))
21 eqid 2727 . . . . . . . . . . . . . . . . 17 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
2220, 21wlkiswwlks2lem6 29659 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ 1 ≀ (β™―β€˜π‘ƒ)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ) β†’ ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))((iEdgβ€˜πΊ)β€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
2314, 19, 22sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))((iEdgβ€˜πΊ)β€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
24 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ↔ (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ Word dom (iEdgβ€˜πΊ)))
25 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (β™―β€˜π‘“) = (β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))
2625oveq2d 7430 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (0...(β™―β€˜π‘“)) = (0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})))))
2726feq2d 6702 . . . . . . . . . . . . . . . . . 18 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ↔ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))⟢(Vtxβ€˜πΊ)))
2825oveq2d 7430 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})))))
29 fveq1 6890 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (π‘“β€˜π‘–) = ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–))
3029fveqeq2d 6899 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ ((iEdgβ€˜πΊ)β€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
3128, 30raleqbidv 3337 . . . . . . . . . . . . . . . . . 18 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))((iEdgβ€˜πΊ)β€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
3224, 27, 313anbi123d 1433 . . . . . . . . . . . . . . . . 17 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ ((𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ↔ ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))((iEdgβ€˜πΊ)β€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
3332imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) β†’ ((βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) ↔ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))((iEdgβ€˜πΊ)β€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))))
3433adantl 481 . . . . . . . . . . . . . . 15 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ ((βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) ↔ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))})) ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))))((iEdgβ€˜πΊ)β€˜((π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))))
3523, 34mpbird 257 . . . . . . . . . . . . . 14 ((((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘(iEdgβ€˜πΊ)β€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
367, 35spcimedv 3580 . . . . . . . . . . . . 13 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
3736ex 412 . . . . . . . . . . . 12 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))))
3837com23 86 . . . . . . . . . . 11 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))))
39383impia 1115 . . . . . . . . . 10 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ USPGraph) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
4039expd 415 . . . . . . . . 9 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝐺 ∈ USPGraph β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))))
4140impcom 407 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝐺 ∈ USPGraph β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
4241imp 406 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝐺 ∈ USPGraph) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
43 uspgrupgr 28965 . . . . . . . . . 10 (𝐺 ∈ USPGraph β†’ 𝐺 ∈ UPGraph)
441, 21upgriswlk 29429 . . . . . . . . . 10 (𝐺 ∈ UPGraph β†’ (𝑓(Walksβ€˜πΊ)𝑃 ↔ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
4543, 44syl 17 . . . . . . . . 9 (𝐺 ∈ USPGraph β†’ (𝑓(Walksβ€˜πΊ)𝑃 ↔ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
4645adantl 481 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝐺 ∈ USPGraph) β†’ (𝑓(Walksβ€˜πΊ)𝑃 ↔ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
4746exbidv 1917 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝐺 ∈ USPGraph) β†’ (βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃 ↔ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
4842, 47mpbird 257 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝐺 ∈ USPGraph) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃)
4948ex 412 . . . . 5 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝐺 ∈ USPGraph β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
5049ex 412 . . . 4 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝐺 ∈ USPGraph β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃)))
514, 50biimtrid 241 . . 3 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ (𝐺 ∈ USPGraph β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃)))
522, 51mpcom 38 . 2 (𝑃 ∈ (WWalksβ€˜πΊ) β†’ (𝐺 ∈ USPGraph β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
5352com12 32 1 (𝐺 ∈ USPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534  βˆƒwex 1774   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  Vcvv 3469  βˆ…c0 4318  {cpr 4626   class class class wbr 5142   ↦ cmpt 5225  β—‘ccnv 5671  dom cdm 5672  ran crn 5673  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  0cc0 11124  1c1 11125   + caddc 11127   ≀ cle 11265   βˆ’ cmin 11460  ...cfz 13502  ..^cfzo 13645  β™―chash 14307  Word cword 14482  Vtxcvtx 28783  iEdgciedg 28784  Edgcedg 28834  UPGraphcupgr 28867  USPGraphcuspgr 28935  Walkscwlks 29384  WWalkscwwlks 29610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8716  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9910  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-n0 12489  df-xnn0 12561  df-z 12575  df-uz 12839  df-fz 13503  df-fzo 13646  df-hash 14308  df-word 14483  df-edg 28835  df-uhgr 28845  df-upgr 28869  df-uspgr 28937  df-wlks 29387  df-wwlks 29615
This theorem is referenced by:  wlkiswwlks  29661  wlklnwwlkln2  29668
  Copyright terms: Public domain W3C validator