MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2 29109
Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks2 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlks2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlkbp 29075 . . 3 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))
3 eqid 2733 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
41, 3iswwlks 29070 . . . 4 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5 ovex 7437 . . . . . . . . . . . . . . 15 (0..^((♯‘𝑃) − 1)) ∈ V
6 mptexg 7218 . . . . . . . . . . . . . . 15 ((0..^((♯‘𝑃) − 1)) ∈ V → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
75, 6mp1i 13 . . . . . . . . . . . . . 14 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
8 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝐺 ∈ USPGraph)
9 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 𝑃 ∈ Word (Vtx‘𝐺))
10 hashge1 14345 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → 1 ≤ (♯‘𝑃))
1110ancoms 460 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → 1 ≤ (♯‘𝑃))
1211adantr 482 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → 1 ≤ (♯‘𝑃))
138, 9, 123jca 1129 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
1413adantr 482 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)))
15 edgval 28289 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1716eleq2d 2820 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1817ralbidv 3178 . . . . . . . . . . . . . . . . 17 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1918biimpd 228 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
20 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21 eqid 2733 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = (iEdg‘𝐺)
2220, 21wlkiswwlks2lem6 29108 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2314, 19, 22sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
24 eleq1 2822 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺)))
25 fveq2 6888 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (♯‘𝑓) = (♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))
2625oveq2d 7420 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0...(♯‘𝑓)) = (0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
2726feq2d 6700 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺)))
2825oveq2d 7420 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0..^(♯‘𝑓)) = (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
29 fveq1 6887 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓𝑖) = ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖))
3029fveqeq2d 6896 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3128, 30raleqbidv 3343 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3224, 27, 313anbi123d 1437 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3332imbi2d 341 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3433adantl 483 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3523, 34mpbird 257 . . . . . . . . . . . . . 14 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) ∧ 𝑓 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
367, 35spcimedv 3585 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3736ex 414 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3837com23 86 . . . . . . . . . . 11 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
39383impia 1118 . . . . . . . . . 10 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4039expd 417 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
4140impcom 409 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4241imp 408 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
43 uspgrupgr 28416 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
441, 21upgriswlk 28878 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4543, 44syl 17 . . . . . . . . 9 (𝐺 ∈ USPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4645adantl 483 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4746exbidv 1925 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4842, 47mpbird 257 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
4948ex 414 . . . . 5 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5049ex 414 . . . 4 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
514, 50biimtrid 241 . . 3 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
522, 51mpcom 38 . 2 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5352com12 32 1 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  Vcvv 3475  c0 4321  {cpr 4629   class class class wbr 5147  cmpt 5230  ccnv 5674  dom cdm 5675  ran crn 5676  wf 6536  cfv 6540  (class class class)co 7404  0cc0 11106  1c1 11107   + caddc 11109  cle 11245  cmin 11440  ...cfz 13480  ..^cfzo 13623  chash 14286  Word cword 14460  Vtxcvtx 28236  iEdgciedg 28237  Edgcedg 28287  UPGraphcupgr 28320  USPGraphcuspgr 28388  Walkscwlks 28833  WWalkscwwlks 29059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-edg 28288  df-uhgr 28298  df-upgr 28322  df-uspgr 28390  df-wlks 28836  df-wwlks 29064
This theorem is referenced by:  wlkiswwlks  29110  wlklnwwlkln2  29117
  Copyright terms: Public domain W3C validator