Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvcendim | Structured version Visualization version GIF version |
Description: In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019.) |
Ref | Expression |
---|---|
uvcf1o.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
Ref | Expression |
---|---|
uvcendim | ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝐼 ≈ ran 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcf1o.u | . . . . . 6 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | 1 | ovexi 7268 | . . . . 5 ⊢ 𝑈 ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈 ∈ V) |
4 | 1 | uvcf1o 20840 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1-onto→ran 𝑈) |
5 | f1oeq1 6670 | . . . . . . . . 9 ⊢ (𝑈 = 𝑢 → (𝑈:𝐼–1-1-onto→ran 𝑈 ↔ 𝑢:𝐼–1-1-onto→ran 𝑈)) | |
6 | 5 | eqcoms 2747 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑈:𝐼–1-1-onto→ran 𝑈 ↔ 𝑢:𝐼–1-1-onto→ran 𝑈)) |
7 | 6 | biimpd 232 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (𝑈:𝐼–1-1-onto→ran 𝑈 → 𝑢:𝐼–1-1-onto→ran 𝑈)) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → (𝑢 = 𝑈 → (𝑈:𝐼–1-1-onto→ran 𝑈 → 𝑢:𝐼–1-1-onto→ran 𝑈))) |
9 | 4, 8 | syl7 74 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → (𝑢 = 𝑈 → ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑢:𝐼–1-1-onto→ran 𝑈))) |
10 | 9 | imp 410 | . . . 4 ⊢ (((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ 𝑢 = 𝑈) → ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑢:𝐼–1-1-onto→ran 𝑈)) |
11 | 3, 10 | spcimedv 3525 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → ∃𝑢 𝑢:𝐼–1-1-onto→ran 𝑈)) |
12 | 11 | pm2.43i 52 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → ∃𝑢 𝑢:𝐼–1-1-onto→ran 𝑈) |
13 | bren 8659 | . 2 ⊢ (𝐼 ≈ ran 𝑈 ↔ ∃𝑢 𝑢:𝐼–1-1-onto→ran 𝑈) | |
14 | 12, 13 | sylibr 237 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝐼 ≈ ran 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2112 Vcvv 3423 class class class wbr 5069 ran crn 5569 –1-1-onto→wf1o 6399 (class class class)co 7234 ≈ cen 8646 NzRingcnzr 20327 unitVec cuvc 20776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9015 df-sup 9087 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-7 11927 df-8 11928 df-9 11929 df-n0 12120 df-z 12206 df-dec 12323 df-uz 12468 df-fz 13125 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-sca 16850 df-vsca 16851 df-ip 16852 df-tset 16853 df-ple 16854 df-ds 16856 df-hom 16858 df-cco 16859 df-0g 16978 df-prds 16984 df-pws 16986 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-grp 18400 df-mgp 19537 df-ur 19549 df-ring 19596 df-sra 20241 df-rgmod 20242 df-nzr 20328 df-dsmm 20726 df-frlm 20741 df-uvc 20777 |
This theorem is referenced by: frlmisfrlm 20842 lindsdom 35544 aacllem 46221 |
Copyright terms: Public domain | W3C validator |