![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashf1rn | Structured version Visualization version GIF version |
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.) |
Ref | Expression |
---|---|
hashf1rn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6793 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | anim2i 615 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵)) |
3 | 2 | ancomd 460 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉)) |
4 | fex 7238 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ V) |
6 | f1o2ndf1 8127 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | |
7 | df-2nd 7995 | . . . . . . . . 9 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
8 | 7 | funmpt2 6593 | . . . . . . . 8 ⊢ Fun 2nd |
9 | resfunexg 7227 | . . . . . . . 8 ⊢ ((Fun 2nd ∧ 𝐹 ∈ V) → (2nd ↾ 𝐹) ∈ V) | |
10 | 8, 5, 9 | sylancr 585 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (2nd ↾ 𝐹) ∈ V) |
11 | f1oeq1 6826 | . . . . . . . . . 10 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 ↔ 𝑓:𝐹–1-1-onto→ran 𝐹)) | |
12 | 11 | biimpd 228 | . . . . . . . . 9 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
13 | 12 | eqcoms 2733 | . . . . . . . 8 ⊢ (𝑓 = (2nd ↾ 𝐹) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
14 | 13 | adantl 480 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑓 = (2nd ↾ 𝐹)) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
15 | 10, 14 | spcimedv 3579 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
16 | 15 | ex 411 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–1-1→𝐵 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
17 | 16 | com13 88 | . . . 4 ⊢ ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ 𝑉 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
18 | 6, 17 | mpcom 38 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ 𝑉 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
19 | 18 | impcom 406 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹) |
20 | hasheqf1oi 14346 | . 2 ⊢ (𝐹 ∈ V → (∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) | |
21 | 5, 19, 20 | sylc 65 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3461 {csn 4630 ∪ cuni 4909 ran crn 5679 ↾ cres 5680 Fun wfun 6543 ⟶wf 6545 –1-1→wf1 6546 –1-1-onto→wf1o 6548 ‘cfv 6549 2nd c2nd 7993 ♯chash 14325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-hash 14326 |
This theorem is referenced by: hashimarn 14435 hashf1dmrn 14438 usgrsizedg 29100 cycpmco2lem5 32943 cycpmconjslem2 32968 cyc3conja 32970 frlmdim 33440 ply1degltdim 33452 sticksstones2 41750 |
Copyright terms: Public domain | W3C validator |