MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf1rn Structured version   Visualization version   GIF version

Theorem hashf1rn 13995
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hashf1rn ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem hashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6654 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21anim2i 616 . . . 4 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐴𝑉𝐹:𝐴𝐵))
32ancomd 461 . . 3 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴𝑉))
4 fex 7084 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
53, 4syl 17 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
6 f1o2ndf1 7934 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
7 df-2nd 7805 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
87funmpt2 6457 . . . . . . . 8 Fun 2nd
9 resfunexg 7073 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
108, 5, 9sylancr 586 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
11 f1oeq1 6688 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1211biimpd 228 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1312eqcoms 2746 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1413adantl 481 . . . . . . 7 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1510, 14spcimedv 3524 . . . . . 6 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1615ex 412 . . . . 5 (𝐴𝑉 → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
1716com13 88 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
186, 17mpcom 38 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1918impcom 407 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
20 hasheqf1oi 13994 . 2 (𝐹 ∈ V → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
215, 19, 20sylc 65 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  {csn 4558   cuni 4836  ran crn 5581  cres 5582  Fun wfun 6412  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  2nd c2nd 7803  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-hash 13973
This theorem is referenced by:  hashimarn  14083  usgrsizedg  27485  cycpmco2lem5  31299  cycpmconjslem2  31324  cyc3conja  31326  frlmdim  31596  hashf1dmrn  32975  sticksstones2  40031
  Copyright terms: Public domain W3C validator