| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashf1rn | Structured version Visualization version GIF version | ||
| Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.) |
| Ref | Expression |
|---|---|
| hashf1rn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6756 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | anim2i 617 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵)) |
| 3 | 2 | ancomd 461 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉)) |
| 4 | fex 7200 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ V) |
| 6 | f1o2ndf1 8101 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | |
| 7 | df-2nd 7969 | . . . . . . . . 9 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 8 | 7 | funmpt2 6555 | . . . . . . . 8 ⊢ Fun 2nd |
| 9 | resfunexg 7189 | . . . . . . . 8 ⊢ ((Fun 2nd ∧ 𝐹 ∈ V) → (2nd ↾ 𝐹) ∈ V) | |
| 10 | 8, 5, 9 | sylancr 587 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (2nd ↾ 𝐹) ∈ V) |
| 11 | f1oeq1 6788 | . . . . . . . . . 10 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 ↔ 𝑓:𝐹–1-1-onto→ran 𝐹)) | |
| 12 | 11 | biimpd 229 | . . . . . . . . 9 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 13 | 12 | eqcoms 2737 | . . . . . . . 8 ⊢ (𝑓 = (2nd ↾ 𝐹) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑓 = (2nd ↾ 𝐹)) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 15 | 10, 14 | spcimedv 3561 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 16 | 15 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–1-1→𝐵 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
| 17 | 16 | com13 88 | . . . 4 ⊢ ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ 𝑉 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
| 18 | 6, 17 | mpcom 38 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ 𝑉 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 19 | 18 | impcom 407 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹) |
| 20 | hasheqf1oi 14316 | . 2 ⊢ (𝐹 ∈ V → (∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) | |
| 21 | 5, 19, 20 | sylc 65 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 {csn 4589 ∪ cuni 4871 ran crn 5639 ↾ cres 5640 Fun wfun 6505 ⟶wf 6507 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 2nd c2nd 7967 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-hash 14296 |
| This theorem is referenced by: hashimarn 14405 hashf1dmrn 14408 usgrsizedg 29142 cyclnumvtx 29730 cycpmco2lem5 33087 cycpmconjslem2 33112 cyc3conja 33114 frlmdim 33607 ply1degltdim 33619 sticksstones2 42135 |
| Copyright terms: Public domain | W3C validator |