MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf1rn Structured version   Visualization version   GIF version

Theorem hashf1rn 14388
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hashf1rn ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem hashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6805 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21anim2i 617 . . . 4 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐴𝑉𝐹:𝐴𝐵))
32ancomd 461 . . 3 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴𝑉))
4 fex 7246 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
53, 4syl 17 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
6 f1o2ndf1 8146 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
7 df-2nd 8014 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
87funmpt2 6607 . . . . . . . 8 Fun 2nd
9 resfunexg 7235 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
108, 5, 9sylancr 587 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
11 f1oeq1 6837 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1211biimpd 229 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1312eqcoms 2743 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1413adantl 481 . . . . . . 7 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1510, 14spcimedv 3595 . . . . . 6 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1615ex 412 . . . . 5 (𝐴𝑉 → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
1716com13 88 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
186, 17mpcom 38 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1918impcom 407 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
20 hasheqf1oi 14387 . 2 (𝐹 ∈ V → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
215, 19, 20sylc 65 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  {csn 4631   cuni 4912  ran crn 5690  cres 5691  Fun wfun 6557  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  2nd c2nd 8012  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-hash 14367
This theorem is referenced by:  hashimarn  14476  hashf1dmrn  14479  usgrsizedg  29247  cycpmco2lem5  33133  cycpmconjslem2  33158  cyc3conja  33160  frlmdim  33639  ply1degltdim  33651  sticksstones2  42129
  Copyright terms: Public domain W3C validator