MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf1rn Structured version   Visualization version   GIF version

Theorem hashf1rn 13798
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hashf1rn ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem hashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6568 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21anim2i 620 . . . 4 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐴𝑉𝐹:𝐴𝐵))
32ancomd 465 . . 3 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴𝑉))
4 fex 6993 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
53, 4syl 17 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
6 f1o2ndf1 7837 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
7 df-2nd 7708 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
87funmpt2 6372 . . . . . . . 8 Fun 2nd
9 resfunexg 6982 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
108, 5, 9sylancr 590 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
11 f1oeq1 6600 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1211biimpd 232 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1312eqcoms 2746 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1413adantl 485 . . . . . . 7 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1510, 14spcimedv 3497 . . . . . 6 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1615ex 416 . . . . 5 (𝐴𝑉 → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
1716com13 88 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
186, 17mpcom 38 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1918impcom 411 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
20 hasheqf1oi 13797 . 2 (𝐹 ∈ V → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
215, 19, 20sylc 65 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wex 1786  wcel 2113  Vcvv 3397  {csn 4513   cuni 4793  ran crn 5520  cres 5521  Fun wfun 6327  wf 6329  1-1wf1 6330  1-1-ontowf1o 6332  cfv 6333  2nd c2nd 7706  chash 13775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-n0 11970  df-z 12056  df-uz 12318  df-hash 13776
This theorem is referenced by:  hashimarn  13886  usgrsizedg  27149  cycpmco2lem5  30966  cycpmconjslem2  30991  cyc3conja  30993  frlmdim  31258  hashf1dmrn  32638  sticksstones2  39698
  Copyright terms: Public domain W3C validator