MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf1rn Structured version   Visualization version   GIF version

Theorem hashf1rn 14067
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hashf1rn ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem hashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6670 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21anim2i 617 . . . 4 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐴𝑉𝐹:𝐴𝐵))
32ancomd 462 . . 3 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴𝑉))
4 fex 7102 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
53, 4syl 17 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
6 f1o2ndf1 7963 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
7 df-2nd 7832 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
87funmpt2 6473 . . . . . . . 8 Fun 2nd
9 resfunexg 7091 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
108, 5, 9sylancr 587 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
11 f1oeq1 6704 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1211biimpd 228 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1312eqcoms 2746 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1413adantl 482 . . . . . . 7 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1510, 14spcimedv 3534 . . . . . 6 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1615ex 413 . . . . 5 (𝐴𝑉 → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
1716com13 88 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
186, 17mpcom 38 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1918impcom 408 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
20 hasheqf1oi 14066 . 2 (𝐹 ∈ V → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
215, 19, 20sylc 65 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  {csn 4561   cuni 4839  ran crn 5590  cres 5591  Fun wfun 6427  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  2nd c2nd 7830  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-hash 14045
This theorem is referenced by:  hashimarn  14155  usgrsizedg  27582  cycpmco2lem5  31397  cycpmconjslem2  31422  cyc3conja  31424  frlmdim  31694  hashf1dmrn  33075  sticksstones2  40103
  Copyright terms: Public domain W3C validator