![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashf1rn | Structured version Visualization version GIF version |
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.) |
Ref | Expression |
---|---|
hashf1rn | β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (β―βπΉ) = (β―βran πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6784 | . . . . 5 β’ (πΉ:π΄β1-1βπ΅ β πΉ:π΄βΆπ΅) | |
2 | 1 | anim2i 617 | . . . 4 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (π΄ β π β§ πΉ:π΄βΆπ΅)) |
3 | 2 | ancomd 462 | . . 3 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (πΉ:π΄βΆπ΅ β§ π΄ β π)) |
4 | fex 7224 | . . 3 β’ ((πΉ:π΄βΆπ΅ β§ π΄ β π) β πΉ β V) | |
5 | 3, 4 | syl 17 | . 2 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β πΉ β V) |
6 | f1o2ndf1 8104 | . . . 4 β’ (πΉ:π΄β1-1βπ΅ β (2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ) | |
7 | df-2nd 7972 | . . . . . . . . 9 β’ 2nd = (π₯ β V β¦ βͺ ran {π₯}) | |
8 | 7 | funmpt2 6584 | . . . . . . . 8 β’ Fun 2nd |
9 | resfunexg 7213 | . . . . . . . 8 β’ ((Fun 2nd β§ πΉ β V) β (2nd βΎ πΉ) β V) | |
10 | 8, 5, 9 | sylancr 587 | . . . . . . 7 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (2nd βΎ πΉ) β V) |
11 | f1oeq1 6818 | . . . . . . . . . 10 β’ ((2nd βΎ πΉ) = π β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) | |
12 | 11 | biimpd 228 | . . . . . . . . 9 β’ ((2nd βΎ πΉ) = π β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) |
13 | 12 | eqcoms 2740 | . . . . . . . 8 β’ (π = (2nd βΎ πΉ) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) |
14 | 13 | adantl 482 | . . . . . . 7 β’ (((π΄ β π β§ πΉ:π΄β1-1βπ΅) β§ π = (2nd βΎ πΉ)) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) |
15 | 10, 14 | spcimedv 3585 | . . . . . 6 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β βπ π:πΉβ1-1-ontoβran πΉ)) |
16 | 15 | ex 413 | . . . . 5 β’ (π΄ β π β (πΉ:π΄β1-1βπ΅ β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β βπ π:πΉβ1-1-ontoβran πΉ))) |
17 | 16 | com13 88 | . . . 4 β’ ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β (πΉ:π΄β1-1βπ΅ β (π΄ β π β βπ π:πΉβ1-1-ontoβran πΉ))) |
18 | 6, 17 | mpcom 38 | . . 3 β’ (πΉ:π΄β1-1βπ΅ β (π΄ β π β βπ π:πΉβ1-1-ontoβran πΉ)) |
19 | 18 | impcom 408 | . 2 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β βπ π:πΉβ1-1-ontoβran πΉ) |
20 | hasheqf1oi 14307 | . 2 β’ (πΉ β V β (βπ π:πΉβ1-1-ontoβran πΉ β (β―βπΉ) = (β―βran πΉ))) | |
21 | 5, 19, 20 | sylc 65 | 1 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (β―βπΉ) = (β―βran πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 βwex 1781 β wcel 2106 Vcvv 3474 {csn 4627 βͺ cuni 4907 ran crn 5676 βΎ cres 5677 Fun wfun 6534 βΆwf 6536 β1-1βwf1 6537 β1-1-ontoβwf1o 6539 βcfv 6540 2nd c2nd 7970 β―chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-hash 14287 |
This theorem is referenced by: hashimarn 14396 hashf1dmrn 14399 usgrsizedg 28461 cycpmco2lem5 32276 cycpmconjslem2 32301 cyc3conja 32303 frlmdim 32684 ply1degltdim 32696 sticksstones2 40951 |
Copyright terms: Public domain | W3C validator |