MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf1rn Structured version   Visualization version   GIF version

Theorem hashf1rn 14317
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hashf1rn ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem hashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6756 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21anim2i 617 . . . 4 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐴𝑉𝐹:𝐴𝐵))
32ancomd 461 . . 3 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴𝑉))
4 fex 7200 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
53, 4syl 17 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
6 f1o2ndf1 8101 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
7 df-2nd 7969 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
87funmpt2 6555 . . . . . . . 8 Fun 2nd
9 resfunexg 7189 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
108, 5, 9sylancr 587 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
11 f1oeq1 6788 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1211biimpd 229 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1312eqcoms 2737 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1413adantl 481 . . . . . . 7 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1510, 14spcimedv 3561 . . . . . 6 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1615ex 412 . . . . 5 (𝐴𝑉 → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
1716com13 88 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
186, 17mpcom 38 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
1918impcom 407 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
20 hasheqf1oi 14316 . 2 (𝐹 ∈ V → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
215, 19, 20sylc 65 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  {csn 4589   cuni 4871  ran crn 5639  cres 5640  Fun wfun 6505  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  2nd c2nd 7967  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-hash 14296
This theorem is referenced by:  hashimarn  14405  hashf1dmrn  14408  usgrsizedg  29142  cyclnumvtx  29730  cycpmco2lem5  33087  cycpmconjslem2  33112  cyc3conja  33114  frlmdim  33607  ply1degltdim  33619  sticksstones2  42135
  Copyright terms: Public domain W3C validator