![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashf1rn | Structured version Visualization version GIF version |
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.) |
Ref | Expression |
---|---|
hashf1rn | β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (β―βπΉ) = (β―βran πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6781 | . . . . 5 β’ (πΉ:π΄β1-1βπ΅ β πΉ:π΄βΆπ΅) | |
2 | 1 | anim2i 616 | . . . 4 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (π΄ β π β§ πΉ:π΄βΆπ΅)) |
3 | 2 | ancomd 461 | . . 3 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (πΉ:π΄βΆπ΅ β§ π΄ β π)) |
4 | fex 7223 | . . 3 β’ ((πΉ:π΄βΆπ΅ β§ π΄ β π) β πΉ β V) | |
5 | 3, 4 | syl 17 | . 2 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β πΉ β V) |
6 | f1o2ndf1 8108 | . . . 4 β’ (πΉ:π΄β1-1βπ΅ β (2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ) | |
7 | df-2nd 7975 | . . . . . . . . 9 β’ 2nd = (π₯ β V β¦ βͺ ran {π₯}) | |
8 | 7 | funmpt2 6581 | . . . . . . . 8 β’ Fun 2nd |
9 | resfunexg 7212 | . . . . . . . 8 β’ ((Fun 2nd β§ πΉ β V) β (2nd βΎ πΉ) β V) | |
10 | 8, 5, 9 | sylancr 586 | . . . . . . 7 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (2nd βΎ πΉ) β V) |
11 | f1oeq1 6815 | . . . . . . . . . 10 β’ ((2nd βΎ πΉ) = π β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) | |
12 | 11 | biimpd 228 | . . . . . . . . 9 β’ ((2nd βΎ πΉ) = π β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) |
13 | 12 | eqcoms 2734 | . . . . . . . 8 β’ (π = (2nd βΎ πΉ) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) |
14 | 13 | adantl 481 | . . . . . . 7 β’ (((π΄ β π β§ πΉ:π΄β1-1βπ΅) β§ π = (2nd βΎ πΉ)) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β π:πΉβ1-1-ontoβran πΉ)) |
15 | 10, 14 | spcimedv 3579 | . . . . . 6 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β βπ π:πΉβ1-1-ontoβran πΉ)) |
16 | 15 | ex 412 | . . . . 5 β’ (π΄ β π β (πΉ:π΄β1-1βπ΅ β ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β βπ π:πΉβ1-1-ontoβran πΉ))) |
17 | 16 | com13 88 | . . . 4 β’ ((2nd βΎ πΉ):πΉβ1-1-ontoβran πΉ β (πΉ:π΄β1-1βπ΅ β (π΄ β π β βπ π:πΉβ1-1-ontoβran πΉ))) |
18 | 6, 17 | mpcom 38 | . . 3 β’ (πΉ:π΄β1-1βπ΅ β (π΄ β π β βπ π:πΉβ1-1-ontoβran πΉ)) |
19 | 18 | impcom 407 | . 2 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β βπ π:πΉβ1-1-ontoβran πΉ) |
20 | hasheqf1oi 14316 | . 2 β’ (πΉ β V β (βπ π:πΉβ1-1-ontoβran πΉ β (β―βπΉ) = (β―βran πΉ))) | |
21 | 5, 19, 20 | sylc 65 | 1 β’ ((π΄ β π β§ πΉ:π΄β1-1βπ΅) β (β―βπΉ) = (β―βran πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 Vcvv 3468 {csn 4623 βͺ cuni 4902 ran crn 5670 βΎ cres 5671 Fun wfun 6531 βΆwf 6533 β1-1βwf1 6534 β1-1-ontoβwf1o 6536 βcfv 6537 2nd c2nd 7973 β―chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-hash 14296 |
This theorem is referenced by: hashimarn 14405 hashf1dmrn 14408 usgrsizedg 28980 cycpmco2lem5 32795 cycpmconjslem2 32820 cyc3conja 32822 frlmdim 33214 ply1degltdim 33226 sticksstones2 41524 |
Copyright terms: Public domain | W3C validator |