MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovfo Structured version   Visualization version   GIF version

Theorem wwlktovfo 14369
Description: Lemma 3 for wrd2f1tovbij 14371. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovfo (𝑃𝑉𝐹:𝐷onto𝑅)
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovfo
Dummy variables 𝑝 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlktovf1o.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2 wwlktovf1o.r . . . 4 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3 wwlktovf1o.f . . . 4 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
41, 2, 3wwlktovf 14367 . . 3 𝐹:𝐷𝑅
54a1i 11 . 2 (𝑃𝑉𝐹:𝐷𝑅)
6 preq2 4627 . . . . . 6 (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝})
76eleq1d 2836 . . . . 5 (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋))
87, 2elrab2 3605 . . . 4 (𝑝𝑅 ↔ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))
9 simpl 486 . . . . . . . . . . 11 ((𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋) → 𝑝𝑉)
109anim2i 619 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (𝑃𝑉𝑝𝑉))
11 eqidd 2759 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩})
12 wrdlen2i 14351 . . . . . . . . . 10 ((𝑃𝑉𝑝𝑉) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))))
1310, 11, 12sylc 65 . . . . . . . . 9 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)))
14 prex 5301 . . . . . . . . . . 11 {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ V
1514a1i 11 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ V)
16 eleq1 2839 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1716biimpd 232 . . . . . . . . . . . . . . . . . . 19 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1817adantr 484 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1918com12 32 . . . . . . . . . . . . . . . . 17 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2019adantr 484 . . . . . . . . . . . . . . . 16 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2120adantr 484 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2221impcom 411 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → 𝑢 ∈ Word 𝑉)
23 fveqeq2 6667 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 ↔ (♯‘𝑢) = 2))
2423biimpd 232 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (♯‘𝑢) = 2))
2524adantr 484 . . . . . . . . . . . . . . . . . . 19 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (♯‘𝑢) = 2))
2625com12 32 . . . . . . . . . . . . . . . . . 18 ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2726adantl 485 . . . . . . . . . . . . . . . . 17 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2827adantr 484 . . . . . . . . . . . . . . . 16 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2928impcom 411 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → (♯‘𝑢) = 2)
30 fveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = (𝑢‘0))
3130eqeq1d 2760 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
3231biimpd 232 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (𝑢‘0) = 𝑃))
3332adantr 484 . . . . . . . . . . . . . . . . . . 19 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (𝑢‘0) = 𝑃))
3433com12 32 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3534adantr 484 . . . . . . . . . . . . . . . . 17 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3635adantl 485 . . . . . . . . . . . . . . . 16 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3736impcom 411 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → (𝑢‘0) = 𝑃)
38 fveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . 24 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = (𝑢‘1))
3938eqeq1d 2760 . . . . . . . . . . . . . . . . . . . . . . 23 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝 ↔ (𝑢‘1) = 𝑝))
4031, 39anbi12d 633 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) ↔ ((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝)))
41 preq12 4628 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {(𝑢‘0), (𝑢‘1)} = {𝑃, 𝑝})
4241eqcomd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {𝑃, 𝑝} = {(𝑢‘0), (𝑢‘1)})
4342eleq1d 2836 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
4443biimpd 232 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
4540, 44syl6bi 256 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4645com12 32 . . . . . . . . . . . . . . . . . . . 20 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4746adantl 485 . . . . . . . . . . . . . . . . . . 19 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4847com13 88 . . . . . . . . . . . . . . . . . 18 ({𝑃, 𝑝} ∈ 𝑋 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4948ad2antll 728 . . . . . . . . . . . . . . . . 17 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
5049impcom 411 . . . . . . . . . . . . . . . 16 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
5150imp 410 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)
5229, 37, 513jca 1125 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
53 eqcom 2765 . . . . . . . . . . . . . . . . . . . 20 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1))
5438eqeq2d 2769 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) ↔ 𝑝 = (𝑢‘1)))
5554biimpd 232 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) → 𝑝 = (𝑢‘1)))
5653, 55syl5bi 245 . . . . . . . . . . . . . . . . . . 19 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝𝑝 = (𝑢‘1)))
5756com12 32 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢𝑝 = (𝑢‘1)))
5857ad2antll 728 . . . . . . . . . . . . . . . . 17 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢𝑝 = (𝑢‘1)))
5958com12 32 . . . . . . . . . . . . . . . 16 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → 𝑝 = (𝑢‘1)))
6059adantr 484 . . . . . . . . . . . . . . 15 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → 𝑝 = (𝑢‘1)))
6160imp 410 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → 𝑝 = (𝑢‘1))
6222, 52, 61jca31 518 . . . . . . . . . . . . 13 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
6362exp31 423 . . . . . . . . . . . 12 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))))
6463eqcoms 2766 . . . . . . . . . . 11 (𝑢 = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} → ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))))
6564impcom 411 . . . . . . . . . 10 (((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) ∧ 𝑢 = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))
6615, 65spcimedv 3512 . . . . . . . . 9 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))
6713, 66mpd 15 . . . . . . . 8 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
68 fveqeq2 6667 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2))
69 fveq1 6657 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
7069eqeq1d 2760 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
71 fveq1 6657 . . . . . . . . . . . . . 14 (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1))
7269, 71preq12d 4634 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)})
7372eleq1d 2836 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
7468, 70, 733anbi123d 1433 . . . . . . . . . . 11 (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
7574elrab 3602 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↔ (𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
7675anbi1i 626 . . . . . . . . 9 ((𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
7776exbii 1849 . . . . . . . 8 (∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
7867, 77sylibr 237 . . . . . . 7 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)))
79 df-rex 3076 . . . . . . 7 (∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1) ↔ ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)))
8078, 79sylibr 237 . . . . . 6 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1))
811rexeqi 3328 . . . . . 6 (∃𝑢𝐷 𝑝 = (𝑢‘1) ↔ ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1))
8280, 81sylibr 237 . . . . 5 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢𝐷 𝑝 = (𝑢‘1))
83 fveq1 6657 . . . . . . . 8 (𝑡 = 𝑢 → (𝑡‘1) = (𝑢‘1))
84 fvex 6671 . . . . . . . 8 (𝑢‘1) ∈ V
8583, 3, 84fvmpt 6759 . . . . . . 7 (𝑢𝐷 → (𝐹𝑢) = (𝑢‘1))
8685eqeq2d 2769 . . . . . 6 (𝑢𝐷 → (𝑝 = (𝐹𝑢) ↔ 𝑝 = (𝑢‘1)))
8786rexbiia 3174 . . . . 5 (∃𝑢𝐷 𝑝 = (𝐹𝑢) ↔ ∃𝑢𝐷 𝑝 = (𝑢‘1))
8882, 87sylibr 237 . . . 4 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢𝐷 𝑝 = (𝐹𝑢))
898, 88sylan2b 596 . . 3 ((𝑃𝑉𝑝𝑅) → ∃𝑢𝐷 𝑝 = (𝐹𝑢))
9089ralrimiva 3113 . 2 (𝑃𝑉 → ∀𝑝𝑅𝑢𝐷 𝑝 = (𝐹𝑢))
91 dffo3 6859 . 2 (𝐹:𝐷onto𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑝𝑅𝑢𝐷 𝑝 = (𝐹𝑢)))
925, 90, 91sylanbrc 586 1 (𝑃𝑉𝐹:𝐷onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  {cpr 4524  cop 4528  cmpt 5112  wf 6331  ontowfo 6333  cfv 6335  0cc0 10575  1c1 10576  2c2 11729  chash 13740  Word cword 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-oadd 8116  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-dju 9363  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914
This theorem is referenced by:  wwlktovf1o  14370
  Copyright terms: Public domain W3C validator