MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovfo Structured version   Visualization version   GIF version

Theorem wwlktovfo 14854
Description: Lemma 3 for wrd2f1tovbij 14856. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovfo (𝑃𝑉𝐹:𝐷onto𝑅)
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovfo
Dummy variables 𝑝 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlktovf1o.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2 wwlktovf1o.r . . . 4 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3 wwlktovf1o.f . . . 4 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
41, 2, 3wwlktovf 14852 . . 3 𝐹:𝐷𝑅
54a1i 11 . 2 (𝑃𝑉𝐹:𝐷𝑅)
6 preq2 4700 . . . . . 6 (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝})
76eleq1d 2823 . . . . 5 (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋))
87, 2elrab2 3653 . . . 4 (𝑝𝑅 ↔ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))
9 simpl 484 . . . . . . . . . . 11 ((𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋) → 𝑝𝑉)
109anim2i 618 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (𝑃𝑉𝑝𝑉))
11 eqidd 2738 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩})
12 wrdlen2i 14838 . . . . . . . . . 10 ((𝑃𝑉𝑝𝑉) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))))
1310, 11, 12sylc 65 . . . . . . . . 9 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)))
14 prex 5394 . . . . . . . . . . 11 {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ V
1514a1i 11 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ V)
16 eleq1 2826 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1716biimpd 228 . . . . . . . . . . . . . . . . . . 19 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1817adantr 482 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1918com12 32 . . . . . . . . . . . . . . . . 17 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2019adantr 482 . . . . . . . . . . . . . . . 16 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2120adantr 482 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2221impcom 409 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → 𝑢 ∈ Word 𝑉)
23 fveqeq2 6856 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 ↔ (♯‘𝑢) = 2))
2423biimpd 228 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (♯‘𝑢) = 2))
2524adantr 482 . . . . . . . . . . . . . . . . . . 19 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (♯‘𝑢) = 2))
2625com12 32 . . . . . . . . . . . . . . . . . 18 ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2726adantl 483 . . . . . . . . . . . . . . . . 17 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2827adantr 482 . . . . . . . . . . . . . . . 16 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2928impcom 409 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → (♯‘𝑢) = 2)
30 fveq1 6846 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = (𝑢‘0))
3130eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
3231biimpd 228 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (𝑢‘0) = 𝑃))
3332adantr 482 . . . . . . . . . . . . . . . . . . 19 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (𝑢‘0) = 𝑃))
3433com12 32 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3534adantr 482 . . . . . . . . . . . . . . . . 17 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3635adantl 483 . . . . . . . . . . . . . . . 16 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3736impcom 409 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → (𝑢‘0) = 𝑃)
38 fveq1 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = (𝑢‘1))
3938eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . 23 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝 ↔ (𝑢‘1) = 𝑝))
4031, 39anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) ↔ ((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝)))
41 preq12 4701 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {(𝑢‘0), (𝑢‘1)} = {𝑃, 𝑝})
4241eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {𝑃, 𝑝} = {(𝑢‘0), (𝑢‘1)})
4342eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
4443biimpd 228 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
4540, 44syl6bi 253 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4645com12 32 . . . . . . . . . . . . . . . . . . . 20 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4746adantl 483 . . . . . . . . . . . . . . . . . . 19 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4847com13 88 . . . . . . . . . . . . . . . . . 18 ({𝑃, 𝑝} ∈ 𝑋 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4948ad2antll 728 . . . . . . . . . . . . . . . . 17 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
5049impcom 409 . . . . . . . . . . . . . . . 16 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
5150imp 408 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)
5229, 37, 513jca 1129 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
53 eqcom 2744 . . . . . . . . . . . . . . . . . . . 20 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1))
5438eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) ↔ 𝑝 = (𝑢‘1)))
5554biimpd 228 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) → 𝑝 = (𝑢‘1)))
5653, 55biimtrid 241 . . . . . . . . . . . . . . . . . . 19 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝𝑝 = (𝑢‘1)))
5756com12 32 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢𝑝 = (𝑢‘1)))
5857ad2antll 728 . . . . . . . . . . . . . . . . 17 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢𝑝 = (𝑢‘1)))
5958com12 32 . . . . . . . . . . . . . . . 16 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → 𝑝 = (𝑢‘1)))
6059adantr 482 . . . . . . . . . . . . . . 15 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → 𝑝 = (𝑢‘1)))
6160imp 408 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → 𝑝 = (𝑢‘1))
6222, 52, 61jca31 516 . . . . . . . . . . . . 13 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
6362exp31 421 . . . . . . . . . . . 12 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))))
6463eqcoms 2745 . . . . . . . . . . 11 (𝑢 = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} → ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))))
6564impcom 409 . . . . . . . . . 10 (((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) ∧ 𝑢 = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))
6615, 65spcimedv 3557 . . . . . . . . 9 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))
6713, 66mpd 15 . . . . . . . 8 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
68 fveqeq2 6856 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2))
69 fveq1 6846 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
7069eqeq1d 2739 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
71 fveq1 6846 . . . . . . . . . . . . . 14 (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1))
7269, 71preq12d 4707 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)})
7372eleq1d 2823 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
7468, 70, 733anbi123d 1437 . . . . . . . . . . 11 (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
7574elrab 3650 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↔ (𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
7675anbi1i 625 . . . . . . . . 9 ((𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
7776exbii 1851 . . . . . . . 8 (∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
7867, 77sylibr 233 . . . . . . 7 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)))
79 df-rex 3075 . . . . . . 7 (∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1) ↔ ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)))
8078, 79sylibr 233 . . . . . 6 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1))
811rexeqi 3315 . . . . . 6 (∃𝑢𝐷 𝑝 = (𝑢‘1) ↔ ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1))
8280, 81sylibr 233 . . . . 5 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢𝐷 𝑝 = (𝑢‘1))
83 fveq1 6846 . . . . . . . 8 (𝑡 = 𝑢 → (𝑡‘1) = (𝑢‘1))
84 fvex 6860 . . . . . . . 8 (𝑢‘1) ∈ V
8583, 3, 84fvmpt 6953 . . . . . . 7 (𝑢𝐷 → (𝐹𝑢) = (𝑢‘1))
8685eqeq2d 2748 . . . . . 6 (𝑢𝐷 → (𝑝 = (𝐹𝑢) ↔ 𝑝 = (𝑢‘1)))
8786rexbiia 3096 . . . . 5 (∃𝑢𝐷 𝑝 = (𝐹𝑢) ↔ ∃𝑢𝐷 𝑝 = (𝑢‘1))
8882, 87sylibr 233 . . . 4 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢𝐷 𝑝 = (𝐹𝑢))
898, 88sylan2b 595 . . 3 ((𝑃𝑉𝑝𝑅) → ∃𝑢𝐷 𝑝 = (𝐹𝑢))
9089ralrimiva 3144 . 2 (𝑃𝑉 → ∀𝑝𝑅𝑢𝐷 𝑝 = (𝐹𝑢))
91 dffo3 7057 . 2 (𝐹:𝐷onto𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑝𝑅𝑢𝐷 𝑝 = (𝐹𝑢)))
925, 90, 91sylanbrc 584 1 (𝑃𝑉𝐹:𝐷onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wral 3065  wrex 3074  {crab 3410  Vcvv 3448  {cpr 4593  cop 4597  cmpt 5193  wf 6497  ontowfo 6499  cfv 6501  0cc0 11058  1c1 11059  2c2 12215  chash 14237  Word cword 14409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410
This theorem is referenced by:  wwlktovf1o  14855
  Copyright terms: Public domain W3C validator