Step | Hyp | Ref
| Expression |
1 | | wwlktovf1o.d |
. . . 4
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} |
2 | | wwlktovf1o.r |
. . . 4
⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} |
3 | | wwlktovf1o.f |
. . . 4
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) |
4 | 1, 2, 3 | wwlktovf 14599 |
. . 3
⊢ 𝐹:𝐷⟶𝑅 |
5 | 4 | a1i 11 |
. 2
⊢ (𝑃 ∈ 𝑉 → 𝐹:𝐷⟶𝑅) |
6 | | preq2 4667 |
. . . . . 6
⊢ (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝}) |
7 | 6 | eleq1d 2823 |
. . . . 5
⊢ (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋)) |
8 | 7, 2 | elrab2 3620 |
. . . 4
⊢ (𝑝 ∈ 𝑅 ↔ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) |
9 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋) → 𝑝 ∈ 𝑉) |
10 | 9 | anim2i 616 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (𝑃 ∈ 𝑉 ∧ 𝑝 ∈ 𝑉)) |
11 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {〈0, 𝑃〉, 〈1, 𝑝〉} = {〈0, 𝑃〉, 〈1, 𝑝〉}) |
12 | | wrdlen2i 14583 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ 𝑉 ∧ 𝑝 ∈ 𝑉) → ({〈0, 𝑃〉, 〈1, 𝑝〉} = {〈0, 𝑃〉, 〈1, 𝑝〉} → (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)))) |
13 | 10, 11, 12 | sylc 65 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) |
14 | | prex 5350 |
. . . . . . . . . . 11
⊢ {〈0,
𝑃〉, 〈1, 𝑝〉} ∈
V |
15 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {〈0, 𝑃〉, 〈1, 𝑝〉} ∈ V) |
16 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ↔ 𝑢 ∈ Word 𝑉)) |
17 | 16 | biimpd 228 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 → 𝑢 ∈ Word 𝑉)) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 → 𝑢 ∈ Word 𝑉)) |
19 | 18 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} ∈
Word 𝑉 → (({〈0,
𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉)) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉} ∈
Word 𝑉 ∧
(♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) → (({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉)) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → (({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉)) |
22 | 21 | impcom 407 |
. . . . . . . . . . . . . 14
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) → 𝑢 ∈ Word 𝑉) |
23 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 →
((♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2 ↔ (♯‘𝑢) = 2)) |
24 | 23 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 →
((♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2 → (♯‘𝑢) = 2)) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2 →
(♯‘𝑢) =
2)) |
26 | 25 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2 → (({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2)) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉} ∈
Word 𝑉 ∧
(♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) → (({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → (({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2)) |
29 | 28 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) → (♯‘𝑢) = 2) |
30 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = (𝑢‘0)) |
31 | 30 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → (({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃)) |
32 | 31 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → (({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 → (𝑢‘0) = 𝑃)) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 → (𝑢‘0) = 𝑃)) |
34 | 33 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉}‘0)
= 𝑃 → (({〈0,
𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃)) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝) → (({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃)) |
36 | 35 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → (({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃)) |
37 | 36 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) → (𝑢‘0) = 𝑃) |
38 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = (𝑢‘1)) |
39 | 38 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → (({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝 ↔ (𝑢‘1) = 𝑝)) |
40 | 31, 39 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ((({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝) ↔ ((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝))) |
41 | | preq12 4668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {(𝑢‘0), (𝑢‘1)} = {𝑃, 𝑝}) |
42 | 41 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {𝑃, 𝑝} = {(𝑢‘0), (𝑢‘1)}) |
43 | 42 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) |
44 | 43 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) |
45 | 40, 44 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ((({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) |
46 | 45 | com12 32 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝) → ({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) |
47 | 46 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → ({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) |
48 | 47 | com13 88 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑃, 𝑝} ∈ 𝑋 → ({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) |
49 | 48 | ad2antll 725 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) |
50 | 49 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) |
51 | 50 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋) |
52 | 29, 37, 51 | 3jca 1126 |
. . . . . . . . . . . . . 14
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) → ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) |
53 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉}‘1)
= 𝑝 ↔ 𝑝 = ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1)) |
54 | 38 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → (𝑝 = ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) ↔ 𝑝 = (𝑢‘1))) |
55 | 54 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → (𝑝 = ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) → 𝑝 = (𝑢‘1))) |
56 | 53, 55 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → (({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝 → 𝑝 = (𝑢‘1))) |
57 | 56 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉}‘1)
= 𝑝 → ({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 → 𝑝 = (𝑢‘1))) |
58 | 57 | ad2antll 725 |
. . . . . . . . . . . . . . . . 17
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → ({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 → 𝑝 = (𝑢‘1))) |
59 | 58 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0,
𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → 𝑝 = (𝑢‘1))) |
60 | 59 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → 𝑝 = (𝑢‘1))) |
61 | 60 | imp 406 |
. . . . . . . . . . . . . 14
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) → 𝑝 = (𝑢‘1)) |
62 | 22, 52, 61 | jca31 514 |
. . . . . . . . . . . . 13
⊢
((({〈0, 𝑃〉, 〈1, 𝑝〉} = 𝑢 ∧ (𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝))) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))) |
63 | 62 | exp31 419 |
. . . . . . . . . . . 12
⊢
({〈0, 𝑃〉,
〈1, 𝑝〉} = 𝑢 → ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))) |
64 | 63 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ (𝑢 = {〈0, 𝑃〉, 〈1, 𝑝〉} → ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))) |
65 | 64 | impcom 407 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) ∧ 𝑢 = {〈0, 𝑃〉, 〈1, 𝑝〉}) → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0,
𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))) |
66 | 15, 65 | spcimedv 3524 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({〈0, 𝑃〉, 〈1, 𝑝〉} ∈ Word 𝑉 ∧ (♯‘{〈0, 𝑃〉, 〈1, 𝑝〉}) = 2) ∧ (({〈0,
𝑃〉, 〈1, 𝑝〉}‘0) = 𝑃 ∧ ({〈0, 𝑃〉, 〈1, 𝑝〉}‘1) = 𝑝)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))) |
67 | 13, 66 | mpd 15 |
. . . . . . . 8
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))) |
68 | | fveqeq2 6765 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2)) |
69 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0)) |
70 | 69 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃)) |
71 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1)) |
72 | 69, 71 | preq12d 4674 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)}) |
73 | 72 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) |
74 | 68, 70, 73 | 3anbi123d 1434 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) |
75 | 74 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↔ (𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) |
76 | 75 | anbi1i 623 |
. . . . . . . . 9
⊢ ((𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))) |
77 | 76 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))) |
78 | 67, 77 | sylibr 233 |
. . . . . . 7
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1))) |
79 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑢 ∈
{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1) ↔ ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1))) |
80 | 78, 79 | sylibr 233 |
. . . . . 6
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1)) |
81 | 1 | rexeqi 3338 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐷 𝑝 = (𝑢‘1) ↔ ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1)) |
82 | 80, 81 | sylibr 233 |
. . . . 5
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢 ∈ 𝐷 𝑝 = (𝑢‘1)) |
83 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑡 = 𝑢 → (𝑡‘1) = (𝑢‘1)) |
84 | | fvex 6769 |
. . . . . . . 8
⊢ (𝑢‘1) ∈
V |
85 | 83, 3, 84 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑢 ∈ 𝐷 → (𝐹‘𝑢) = (𝑢‘1)) |
86 | 85 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑢 ∈ 𝐷 → (𝑝 = (𝐹‘𝑢) ↔ 𝑝 = (𝑢‘1))) |
87 | 86 | rexbiia 3176 |
. . . . 5
⊢
(∃𝑢 ∈
𝐷 𝑝 = (𝐹‘𝑢) ↔ ∃𝑢 ∈ 𝐷 𝑝 = (𝑢‘1)) |
88 | 82, 87 | sylibr 233 |
. . . 4
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑝 ∈ 𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢 ∈ 𝐷 𝑝 = (𝐹‘𝑢)) |
89 | 8, 88 | sylan2b 593 |
. . 3
⊢ ((𝑃 ∈ 𝑉 ∧ 𝑝 ∈ 𝑅) → ∃𝑢 ∈ 𝐷 𝑝 = (𝐹‘𝑢)) |
90 | 89 | ralrimiva 3107 |
. 2
⊢ (𝑃 ∈ 𝑉 → ∀𝑝 ∈ 𝑅 ∃𝑢 ∈ 𝐷 𝑝 = (𝐹‘𝑢)) |
91 | | dffo3 6960 |
. 2
⊢ (𝐹:𝐷–onto→𝑅 ↔ (𝐹:𝐷⟶𝑅 ∧ ∀𝑝 ∈ 𝑅 ∃𝑢 ∈ 𝐷 𝑝 = (𝐹‘𝑢))) |
92 | 5, 90, 91 | sylanbrc 582 |
1
⊢ (𝑃 ∈ 𝑉 → 𝐹:𝐷–onto→𝑅) |