MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovfo Structured version   Visualization version   GIF version

Theorem wwlktovfo 14905
Description: Lemma 3 for wrd2f1tovbij 14907. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovfo (𝑃𝑉𝐹:𝐷onto𝑅)
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovfo
Dummy variables 𝑝 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlktovf1o.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2 wwlktovf1o.r . . . 4 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3 wwlktovf1o.f . . . 4 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
41, 2, 3wwlktovf 14903 . . 3 𝐹:𝐷𝑅
54a1i 11 . 2 (𝑃𝑉𝐹:𝐷𝑅)
6 preq2 4737 . . . . . 6 (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝})
76eleq1d 2818 . . . . 5 (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋))
87, 2elrab2 3685 . . . 4 (𝑝𝑅 ↔ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))
9 simpl 483 . . . . . . . . . . 11 ((𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋) → 𝑝𝑉)
109anim2i 617 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (𝑃𝑉𝑝𝑉))
11 eqidd 2733 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩})
12 wrdlen2i 14889 . . . . . . . . . 10 ((𝑃𝑉𝑝𝑉) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))))
1310, 11, 12sylc 65 . . . . . . . . 9 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)))
14 prex 5431 . . . . . . . . . . 11 {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ V
1514a1i 11 . . . . . . . . . 10 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ V)
16 eleq1 2821 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1716biimpd 228 . . . . . . . . . . . . . . . . . . 19 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1817adantr 481 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉𝑢 ∈ Word 𝑉))
1918com12 32 . . . . . . . . . . . . . . . . 17 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2019adantr 481 . . . . . . . . . . . . . . . 16 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2120adantr 481 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → 𝑢 ∈ Word 𝑉))
2221impcom 408 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → 𝑢 ∈ Word 𝑉)
23 fveqeq2 6897 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 ↔ (♯‘𝑢) = 2))
2423biimpd 228 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (♯‘𝑢) = 2))
2524adantr 481 . . . . . . . . . . . . . . . . . . 19 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (♯‘𝑢) = 2))
2625com12 32 . . . . . . . . . . . . . . . . . 18 ((♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2726adantl 482 . . . . . . . . . . . . . . . . 17 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2827adantr 481 . . . . . . . . . . . . . . . 16 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (♯‘𝑢) = 2))
2928impcom 408 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → (♯‘𝑢) = 2)
30 fveq1 6887 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = (𝑢‘0))
3130eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
3231biimpd 228 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (𝑢‘0) = 𝑃))
3332adantr 481 . . . . . . . . . . . . . . . . . . 19 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (𝑢‘0) = 𝑃))
3433com12 32 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3534adantr 481 . . . . . . . . . . . . . . . . 17 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3635adantl 482 . . . . . . . . . . . . . . . 16 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → (𝑢‘0) = 𝑃))
3736impcom 408 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → (𝑢‘0) = 𝑃)
38 fveq1 6887 . . . . . . . . . . . . . . . . . . . . . . . 24 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = (𝑢‘1))
3938eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . . . 23 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝 ↔ (𝑢‘1) = 𝑝))
4031, 39anbi12d 631 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) ↔ ((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝)))
41 preq12 4738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {(𝑢‘0), (𝑢‘1)} = {𝑃, 𝑝})
4241eqcomd 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → {𝑃, 𝑝} = {(𝑢‘0), (𝑢‘1)})
4342eleq1d 2818 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
4443biimpd 228 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑢‘0) = 𝑃 ∧ (𝑢‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
4540, 44syl6bi 252 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4645com12 32 . . . . . . . . . . . . . . . . . . . 20 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4746adantl 482 . . . . . . . . . . . . . . . . . . 19 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ({𝑃, 𝑝} ∈ 𝑋 → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4847com13 88 . . . . . . . . . . . . . . . . . 18 ({𝑃, 𝑝} ∈ 𝑋 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
4948ad2antll 727 . . . . . . . . . . . . . . . . 17 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
5049impcom 408 . . . . . . . . . . . . . . . 16 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
5150imp 407 . . . . . . . . . . . . . . 15 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)
5229, 37, 513jca 1128 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
53 eqcom 2739 . . . . . . . . . . . . . . . . . . . 20 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1))
5438eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . 21 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) ↔ 𝑝 = (𝑢‘1)))
5554biimpd 228 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (𝑝 = ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) → 𝑝 = (𝑢‘1)))
5653, 55biimtrid 241 . . . . . . . . . . . . . . . . . . 19 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝𝑝 = (𝑢‘1)))
5756com12 32 . . . . . . . . . . . . . . . . . 18 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝 → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢𝑝 = (𝑢‘1)))
5857ad2antll 727 . . . . . . . . . . . . . . . . 17 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢𝑝 = (𝑢‘1)))
5958com12 32 . . . . . . . . . . . . . . . 16 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → 𝑝 = (𝑢‘1)))
6059adantr 481 . . . . . . . . . . . . . . 15 (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → 𝑝 = (𝑢‘1)))
6160imp 407 . . . . . . . . . . . . . 14 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → 𝑝 = (𝑢‘1))
6222, 52, 61jca31 515 . . . . . . . . . . . . 13 ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 ∧ (𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋))) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝))) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
6362exp31 420 . . . . . . . . . . . 12 ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} = 𝑢 → ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))))
6463eqcoms 2740 . . . . . . . . . . 11 (𝑢 = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩} → ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))))
6564impcom 408 . . . . . . . . . 10 (((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) ∧ 𝑢 = {⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))
6615, 65spcimedv 3585 . . . . . . . . 9 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ((({⟨0, 𝑃⟩, ⟨1, 𝑝⟩} ∈ Word 𝑉 ∧ (♯‘{⟨0, 𝑃⟩, ⟨1, 𝑝⟩}) = 2) ∧ (({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘0) = 𝑃 ∧ ({⟨0, 𝑃⟩, ⟨1, 𝑝⟩}‘1) = 𝑝)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1))))
6713, 66mpd 15 . . . . . . . 8 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
68 fveqeq2 6897 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2))
69 fveq1 6887 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
7069eqeq1d 2734 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
71 fveq1 6887 . . . . . . . . . . . . . 14 (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1))
7269, 71preq12d 4744 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)})
7372eleq1d 2818 . . . . . . . . . . . 12 (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
7468, 70, 733anbi123d 1436 . . . . . . . . . . 11 (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
7574elrab 3682 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↔ (𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
7675anbi1i 624 . . . . . . . . 9 ((𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
7776exbii 1850 . . . . . . . 8 (∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)) ↔ ∃𝑢((𝑢 ∈ Word 𝑉 ∧ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) ∧ 𝑝 = (𝑢‘1)))
7867, 77sylibr 233 . . . . . . 7 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)))
79 df-rex 3071 . . . . . . 7 (∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1) ↔ ∃𝑢(𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ∧ 𝑝 = (𝑢‘1)))
8078, 79sylibr 233 . . . . . 6 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1))
811rexeqi 3324 . . . . . 6 (∃𝑢𝐷 𝑝 = (𝑢‘1) ↔ ∃𝑢 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}𝑝 = (𝑢‘1))
8280, 81sylibr 233 . . . . 5 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢𝐷 𝑝 = (𝑢‘1))
83 fveq1 6887 . . . . . . . 8 (𝑡 = 𝑢 → (𝑡‘1) = (𝑢‘1))
84 fvex 6901 . . . . . . . 8 (𝑢‘1) ∈ V
8583, 3, 84fvmpt 6995 . . . . . . 7 (𝑢𝐷 → (𝐹𝑢) = (𝑢‘1))
8685eqeq2d 2743 . . . . . 6 (𝑢𝐷 → (𝑝 = (𝐹𝑢) ↔ 𝑝 = (𝑢‘1)))
8786rexbiia 3092 . . . . 5 (∃𝑢𝐷 𝑝 = (𝐹𝑢) ↔ ∃𝑢𝐷 𝑝 = (𝑢‘1))
8882, 87sylibr 233 . . . 4 ((𝑃𝑉 ∧ (𝑝𝑉 ∧ {𝑃, 𝑝} ∈ 𝑋)) → ∃𝑢𝐷 𝑝 = (𝐹𝑢))
898, 88sylan2b 594 . . 3 ((𝑃𝑉𝑝𝑅) → ∃𝑢𝐷 𝑝 = (𝐹𝑢))
9089ralrimiva 3146 . 2 (𝑃𝑉 → ∀𝑝𝑅𝑢𝐷 𝑝 = (𝐹𝑢))
91 dffo3 7100 . 2 (𝐹:𝐷onto𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑝𝑅𝑢𝐷 𝑝 = (𝐹𝑢)))
925, 90, 91sylanbrc 583 1 (𝑃𝑉𝐹:𝐷onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  {cpr 4629  cop 4633  cmpt 5230  wf 6536  ontowfo 6538  cfv 6540  0cc0 11106  1c1 11107  2c2 12263  chash 14286  Word cword 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461
This theorem is referenced by:  wwlktovf1o  14906
  Copyright terms: Public domain W3C validator