Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpuztr Structured version   Visualization version   GIF version

Theorem iunrelexpuztr 38528
Description: The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 14042. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
mptiunrelexp.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpuztr ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑛,𝑀   𝑅,𝑛,𝑟   𝑛,𝑉
Allowed substitution hints:   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem iunrelexpuztr
Dummy variables 𝑥 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6917 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (𝑗 + 𝑖) ∈ V)
2 simprlr 789 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗𝑁)
3 simpll2 1264 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑁 = (ℤ𝑀))
42, 3eleqtrd 2898 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗 ∈ (ℤ𝑀))
5 simpll3 1266 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑀 ∈ ℕ0)
6 simprll 788 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖𝑁)
76, 3eleqtrd 2898 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ (ℤ𝑀))
8 eluznn0 11995 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ0)
95, 7, 8syl2anc 575 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ ℕ0)
10 uzaddcl 11981 . . . . . . . . . . . 12 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑖 ∈ ℕ0) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
114, 9, 10syl2anc 575 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
12 simplr 776 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛 = (𝑗 + 𝑖))
1311, 12, 33eltr4d 2911 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛𝑁)
14 vex 3405 . . . . . . . . . . . . 13 𝑥 ∈ V
15 vex 3405 . . . . . . . . . . . . 13 𝑧 ∈ V
16 vex 3405 . . . . . . . . . . . . 13 𝑦 ∈ V
17 brcogw 5505 . . . . . . . . . . . . . 14 (((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
1817ex 399 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧))
1914, 15, 16, 18mp3an 1578 . . . . . . . . . . . 12 ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
20 simpll3 1266 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ ℕ0)
21 simprr 780 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
22 simpll2 1264 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 = (ℤ𝑀))
2321, 22eleqtrd 2898 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ (ℤ𝑀))
24 eluznn0 11995 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
2520, 23, 24syl2anc 575 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ ℕ0)
26 simprl 778 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
2726, 22eleqtrd 2898 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ (ℤ𝑀))
2820, 27, 8syl2anc 575 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ ℕ0)
29 simpll1 1262 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅𝑉)
30 relexpaddss 38527 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑖 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
3125, 28, 29, 30syl3anc 1483 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
32 simplr 776 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑛 = (𝑗 + 𝑖))
3332oveq2d 6899 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑗 + 𝑖)))
3431, 33sseqtr4d 3850 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟𝑛))
3534ssbrd 4898 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧𝑥(𝑅𝑟𝑛)𝑧))
3619, 35syl5 34 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥(𝑅𝑟𝑛)𝑧))
3736impr 444 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑥(𝑅𝑟𝑛)𝑧)
3813, 37jca 503 . . . . . . . . 9 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
3938ex 399 . . . . . . . 8 (((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
401, 39spcimedv 3496 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
4140exlimdvv 2025 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
42 reeanv 3306 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
43 r2ex 3260 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
4442, 43bitr3i 268 . . . . . 6 ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
45 df-rex 3113 . . . . . 6 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧 ↔ ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
4641, 44, 453imtr4g 287 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4746alrimiv 2018 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4847alrimiv 2018 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4948alrimiv 2018 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
50 cotr 5731 . . . . 5 (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧))
51 mptiunrelexp.def . . . . . . . . . . . 12 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
5251briunov2uz 38507 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦))
53 oveq2 6891 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝑅𝑟𝑛) = (𝑅𝑟𝑖))
5453breqd 4866 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑥(𝑅𝑟𝑛)𝑦𝑥(𝑅𝑟𝑖)𝑦))
5554cbvrexv 3372 . . . . . . . . . . 11 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦)
5652, 55syl6bb 278 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦))
5751briunov2uz 38507 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧))
58 oveq2 6891 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝑅𝑟𝑛) = (𝑅𝑟𝑗))
5958breqd 4866 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑦(𝑅𝑟𝑛)𝑧𝑦(𝑅𝑟𝑗)𝑧))
6059cbvrexv 3372 . . . . . . . . . . 11 (∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)
6157, 60syl6bb 278 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
6256, 61anbi12d 618 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → ((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)))
6351briunov2uz 38507 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
6462, 63imbi12d 335 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6564albidv 2011 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6665albidv 2011 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6766albidv 2011 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6850, 67syl5bb 274 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6968biimprd 239 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
70693adant3 1155 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
7149, 70mpd 15 1 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100  wal 1635   = wceq 1637  wex 1859  wcel 2157  wrex 3108  Vcvv 3402  wss 3780   ciun 4723   class class class wbr 4855  cmpt 4934  ccom 5328  cfv 6110  (class class class)co 6883   + caddc 10233  0cn0 11578  cuz 11923  𝑟crelexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-pre-mulgt0 10307
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5906  df-ord 5952  df-on 5953  df-lim 5954  df-suc 5955  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-riota 6844  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-om 7305  df-2nd 7408  df-wrecs 7651  df-recs 7713  df-rdg 7751  df-er 7988  df-en 8202  df-dom 8203  df-sdom 8204  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-sub 10562  df-neg 10563  df-nn 11315  df-2 11375  df-n0 11579  df-z 11663  df-uz 11924  df-seq 13044  df-relexp 14003
This theorem is referenced by:  dftrcl3  38529  dfrtrcl3  38542
  Copyright terms: Public domain W3C validator