Step | Hyp | Ref
| Expression |
1 | | ovexd 7342 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → (𝑗 + 𝑖) ∈ V) |
2 | | simprlr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑗 ∈ 𝑁) |
3 | | simpll2 1213 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑁 = (ℤ≥‘𝑀)) |
4 | 2, 3 | eleqtrd 2839 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑗 ∈ (ℤ≥‘𝑀)) |
5 | | simpll3 1214 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑀 ∈
ℕ0) |
6 | | simprll 777 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑖 ∈ 𝑁) |
7 | 6, 3 | eleqtrd 2839 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑖 ∈ (ℤ≥‘𝑀)) |
8 | | eluznn0 12703 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑖 ∈
(ℤ≥‘𝑀)) → 𝑖 ∈ ℕ0) |
9 | 5, 7, 8 | syl2anc 585 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑖 ∈ ℕ0) |
10 | | uzaddcl 12690 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ 𝑖 ∈ ℕ0) → (𝑗 + 𝑖) ∈ (ℤ≥‘𝑀)) |
11 | 4, 9, 10 | syl2anc 585 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → (𝑗 + 𝑖) ∈ (ℤ≥‘𝑀)) |
12 | | simplr 767 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑛 = (𝑗 + 𝑖)) |
13 | 11, 12, 3 | 3eltr4d 2852 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑛 ∈ 𝑁) |
14 | | vex 3441 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
15 | | vex 3441 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
16 | | vex 3441 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
17 | | brcogw 5790 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → 𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧) |
18 | 17 | ex 414 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) → ((𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) → 𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧)) |
19 | 14, 15, 16, 18 | mp3an 1461 |
. . . . . . . . . . . 12
⊢ ((𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) → 𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧) |
20 | | simpll3 1214 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑀 ∈
ℕ0) |
21 | | simprr 771 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
22 | | simpll2 1213 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 = (ℤ≥‘𝑀)) |
23 | 21, 22 | eleqtrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
24 | | eluznn0 12703 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ0
∧ 𝑗 ∈
(ℤ≥‘𝑀)) → 𝑗 ∈ ℕ0) |
25 | 20, 23, 24 | syl2anc 585 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ ℕ0) |
26 | | simprl 769 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
27 | 26, 22 | eleqtrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
28 | 20, 27, 8 | syl2anc 585 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ ℕ0) |
29 | | simpll1 1212 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ 𝑉) |
30 | | relexpaddss 41364 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℕ0
∧ 𝑖 ∈
ℕ0 ∧ 𝑅
∈ 𝑉) → ((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖)) ⊆ (𝑅↑𝑟(𝑗 + 𝑖))) |
31 | 25, 28, 29, 30 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖)) ⊆ (𝑅↑𝑟(𝑗 + 𝑖))) |
32 | | simplr 767 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑛 = (𝑗 + 𝑖)) |
33 | 32 | oveq2d 7323 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑗 + 𝑖))) |
34 | 31, 33 | sseqtrrd 3967 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖)) ⊆ (𝑅↑𝑟𝑛)) |
35 | 34 | ssbrd 5124 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧 → 𝑥(𝑅↑𝑟𝑛)𝑧)) |
36 | 19, 35 | syl5 34 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) → 𝑥(𝑅↑𝑟𝑛)𝑧)) |
37 | 36 | impr 456 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑥(𝑅↑𝑟𝑛)𝑧) |
38 | 13, 37 | jca 513 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → (𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧)) |
39 | 38 | ex 414 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) → (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → (𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧))) |
40 | 1, 39 | spcimedv 3539 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → ∃𝑛(𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧))) |
41 | 40 | exlimdvv 1935 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
(∃𝑖∃𝑗((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → ∃𝑛(𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧))) |
42 | | reeanv 3214 |
. . . . . . 7
⊢
(∃𝑖 ∈
𝑁 ∃𝑗 ∈ 𝑁 (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) ↔ (∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧)) |
43 | | r2ex 3189 |
. . . . . . 7
⊢
(∃𝑖 ∈
𝑁 ∃𝑗 ∈ 𝑁 (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) ↔ ∃𝑖∃𝑗((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) |
44 | 42, 43 | bitr3i 277 |
. . . . . 6
⊢
((∃𝑖 ∈
𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) ↔ ∃𝑖∃𝑗((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) |
45 | | df-rex 3072 |
. . . . . 6
⊢
(∃𝑛 ∈
𝑁 𝑥(𝑅↑𝑟𝑛)𝑧 ↔ ∃𝑛(𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧)) |
46 | 41, 44, 45 | 3imtr4g 296 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) |
47 | 46 | alrimiv 1928 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) |
48 | 47 | alrimiv 1928 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) |
49 | 48 | alrimiv 1928 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) |
50 | | cotr 6030 |
. . . . 5
⊢ (((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅) ↔ ∀𝑥∀𝑦∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧)) |
51 | | mptiunrelexp.def |
. . . . . . . . . . . 12
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
52 | 51 | briunov2uz 41344 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑥(𝐶‘𝑅)𝑦 ↔ ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑦)) |
53 | | oveq2 7315 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑖 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑖)) |
54 | 53 | breqd 5092 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑖 → (𝑥(𝑅↑𝑟𝑛)𝑦 ↔ 𝑥(𝑅↑𝑟𝑖)𝑦)) |
55 | 54 | cbvrexvw 3223 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
𝑁 𝑥(𝑅↑𝑟𝑛)𝑦 ↔ ∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦) |
56 | 52, 55 | bitrdi 287 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑥(𝐶‘𝑅)𝑦 ↔ ∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦)) |
57 | 51 | briunov2uz 41344 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑦(𝐶‘𝑅)𝑧 ↔ ∃𝑛 ∈ 𝑁 𝑦(𝑅↑𝑟𝑛)𝑧)) |
58 | | oveq2 7315 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑗)) |
59 | 58 | breqd 5092 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → (𝑦(𝑅↑𝑟𝑛)𝑧 ↔ 𝑦(𝑅↑𝑟𝑗)𝑧)) |
60 | 59 | cbvrexvw 3223 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
𝑁 𝑦(𝑅↑𝑟𝑛)𝑧 ↔ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) |
61 | 57, 60 | bitrdi 287 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑦(𝐶‘𝑅)𝑧 ↔ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧)) |
62 | 56, 61 | anbi12d 632 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → ((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) ↔ (∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧))) |
63 | 51 | briunov2uz 41344 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑥(𝐶‘𝑅)𝑧 ↔ ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) |
64 | 62, 63 | imbi12d 345 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) |
65 | 64 | albidv 1921 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) |
66 | 65 | albidv 1921 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑦∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) |
67 | 66 | albidv 1921 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑥∀𝑦∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) |
68 | 50, 67 | bitrid 283 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅) ↔ ∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) |
69 | 68 | biimprd 248 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅))) |
70 | 69 | 3adant3 1132 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
(∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅))) |
71 | 49, 70 | mpd 15 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅)) |