Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpuztr Structured version   Visualization version   GIF version

Theorem iunrelexpuztr 41280
Description: The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 14752. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
mptiunrelexp.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpuztr ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑛,𝑀   𝑅,𝑛,𝑟   𝑛,𝑉
Allowed substitution hints:   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem iunrelexpuztr
Dummy variables 𝑥 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7303 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (𝑗 + 𝑖) ∈ V)
2 simprlr 776 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗𝑁)
3 simpll2 1211 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑁 = (ℤ𝑀))
42, 3eleqtrd 2842 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗 ∈ (ℤ𝑀))
5 simpll3 1212 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑀 ∈ ℕ0)
6 simprll 775 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖𝑁)
76, 3eleqtrd 2842 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ (ℤ𝑀))
8 eluznn0 12639 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ0)
95, 7, 8syl2anc 583 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ ℕ0)
10 uzaddcl 12626 . . . . . . . . . . . 12 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑖 ∈ ℕ0) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
114, 9, 10syl2anc 583 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
12 simplr 765 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛 = (𝑗 + 𝑖))
1311, 12, 33eltr4d 2855 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛𝑁)
14 vex 3434 . . . . . . . . . . . . 13 𝑥 ∈ V
15 vex 3434 . . . . . . . . . . . . 13 𝑧 ∈ V
16 vex 3434 . . . . . . . . . . . . 13 𝑦 ∈ V
17 brcogw 5774 . . . . . . . . . . . . . 14 (((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
1817ex 412 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧))
1914, 15, 16, 18mp3an 1459 . . . . . . . . . . . 12 ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
20 simpll3 1212 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ ℕ0)
21 simprr 769 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
22 simpll2 1211 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 = (ℤ𝑀))
2321, 22eleqtrd 2842 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ (ℤ𝑀))
24 eluznn0 12639 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
2520, 23, 24syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ ℕ0)
26 simprl 767 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
2726, 22eleqtrd 2842 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ (ℤ𝑀))
2820, 27, 8syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ ℕ0)
29 simpll1 1210 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅𝑉)
30 relexpaddss 41279 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑖 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
3125, 28, 29, 30syl3anc 1369 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
32 simplr 765 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑛 = (𝑗 + 𝑖))
3332oveq2d 7284 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑗 + 𝑖)))
3431, 33sseqtrrd 3966 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟𝑛))
3534ssbrd 5121 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧𝑥(𝑅𝑟𝑛)𝑧))
3619, 35syl5 34 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥(𝑅𝑟𝑛)𝑧))
3736impr 454 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑥(𝑅𝑟𝑛)𝑧)
3813, 37jca 511 . . . . . . . . 9 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
3938ex 412 . . . . . . . 8 (((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
401, 39spcimedv 3532 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
4140exlimdvv 1940 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
42 reeanv 3294 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
43 r2ex 3233 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
4442, 43bitr3i 276 . . . . . 6 ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
45 df-rex 3071 . . . . . 6 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧 ↔ ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
4641, 44, 453imtr4g 295 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4746alrimiv 1933 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4847alrimiv 1933 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4948alrimiv 1933 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
50 cotr 6014 . . . . 5 (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧))
51 mptiunrelexp.def . . . . . . . . . . . 12 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
5251briunov2uz 41259 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦))
53 oveq2 7276 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝑅𝑟𝑛) = (𝑅𝑟𝑖))
5453breqd 5089 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑥(𝑅𝑟𝑛)𝑦𝑥(𝑅𝑟𝑖)𝑦))
5554cbvrexvw 3381 . . . . . . . . . . 11 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦)
5652, 55bitrdi 286 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦))
5751briunov2uz 41259 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧))
58 oveq2 7276 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝑅𝑟𝑛) = (𝑅𝑟𝑗))
5958breqd 5089 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑦(𝑅𝑟𝑛)𝑧𝑦(𝑅𝑟𝑗)𝑧))
6059cbvrexvw 3381 . . . . . . . . . . 11 (∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)
6157, 60bitrdi 286 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
6256, 61anbi12d 630 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → ((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)))
6351briunov2uz 41259 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
6462, 63imbi12d 344 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6564albidv 1926 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6665albidv 1926 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6766albidv 1926 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6850, 67syl5bb 282 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6968biimprd 247 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
70693adant3 1130 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
7149, 70mpd 15 1 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1539   = wceq 1541  wex 1785  wcel 2109  wrex 3066  Vcvv 3430  wss 3891   ciun 4929   class class class wbr 5078  cmpt 5161  ccom 5592  cfv 6430  (class class class)co 7268   + caddc 10858  0cn0 12216  cuz 12564  𝑟crelexp 14711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-seq 13703  df-relexp 14712
This theorem is referenced by:  dftrcl3  41281  dfrtrcl3  41294
  Copyright terms: Public domain W3C validator