Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpuztr Structured version   Visualization version   GIF version

Theorem iunrelexpuztr 40956
Description: The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 14606. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
mptiunrelexp.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpuztr ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑛,𝑀   𝑅,𝑛,𝑟   𝑛,𝑉
Allowed substitution hints:   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem iunrelexpuztr
Dummy variables 𝑥 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7237 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (𝑗 + 𝑖) ∈ V)
2 simprlr 780 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗𝑁)
3 simpll2 1215 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑁 = (ℤ𝑀))
42, 3eleqtrd 2836 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗 ∈ (ℤ𝑀))
5 simpll3 1216 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑀 ∈ ℕ0)
6 simprll 779 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖𝑁)
76, 3eleqtrd 2836 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ (ℤ𝑀))
8 eluznn0 12496 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ0)
95, 7, 8syl2anc 587 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ ℕ0)
10 uzaddcl 12483 . . . . . . . . . . . 12 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑖 ∈ ℕ0) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
114, 9, 10syl2anc 587 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
12 simplr 769 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛 = (𝑗 + 𝑖))
1311, 12, 33eltr4d 2849 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛𝑁)
14 vex 3405 . . . . . . . . . . . . 13 𝑥 ∈ V
15 vex 3405 . . . . . . . . . . . . 13 𝑧 ∈ V
16 vex 3405 . . . . . . . . . . . . 13 𝑦 ∈ V
17 brcogw 5726 . . . . . . . . . . . . . 14 (((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
1817ex 416 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧))
1914, 15, 16, 18mp3an 1463 . . . . . . . . . . . 12 ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
20 simpll3 1216 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ ℕ0)
21 simprr 773 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
22 simpll2 1215 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 = (ℤ𝑀))
2321, 22eleqtrd 2836 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ (ℤ𝑀))
24 eluznn0 12496 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
2520, 23, 24syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ ℕ0)
26 simprl 771 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
2726, 22eleqtrd 2836 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ (ℤ𝑀))
2820, 27, 8syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ ℕ0)
29 simpll1 1214 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅𝑉)
30 relexpaddss 40955 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑖 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
3125, 28, 29, 30syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
32 simplr 769 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑛 = (𝑗 + 𝑖))
3332oveq2d 7218 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑗 + 𝑖)))
3431, 33sseqtrrd 3932 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟𝑛))
3534ssbrd 5086 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧𝑥(𝑅𝑟𝑛)𝑧))
3619, 35syl5 34 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥(𝑅𝑟𝑛)𝑧))
3736impr 458 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑥(𝑅𝑟𝑛)𝑧)
3813, 37jca 515 . . . . . . . . 9 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
3938ex 416 . . . . . . . 8 (((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
401, 39spcimedv 3503 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
4140exlimdvv 1942 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
42 reeanv 3272 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
43 r2ex 3215 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
4442, 43bitr3i 280 . . . . . 6 ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
45 df-rex 3060 . . . . . 6 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧 ↔ ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
4641, 44, 453imtr4g 299 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4746alrimiv 1935 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4847alrimiv 1935 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4948alrimiv 1935 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
50 cotr 5966 . . . . 5 (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧))
51 mptiunrelexp.def . . . . . . . . . . . 12 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
5251briunov2uz 40935 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦))
53 oveq2 7210 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝑅𝑟𝑛) = (𝑅𝑟𝑖))
5453breqd 5054 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑥(𝑅𝑟𝑛)𝑦𝑥(𝑅𝑟𝑖)𝑦))
5554cbvrexvw 3352 . . . . . . . . . . 11 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦)
5652, 55bitrdi 290 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦))
5751briunov2uz 40935 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧))
58 oveq2 7210 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝑅𝑟𝑛) = (𝑅𝑟𝑗))
5958breqd 5054 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑦(𝑅𝑟𝑛)𝑧𝑦(𝑅𝑟𝑗)𝑧))
6059cbvrexvw 3352 . . . . . . . . . . 11 (∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)
6157, 60bitrdi 290 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
6256, 61anbi12d 634 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → ((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)))
6351briunov2uz 40935 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
6462, 63imbi12d 348 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6564albidv 1928 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6665albidv 1928 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6766albidv 1928 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6850, 67syl5bb 286 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6968biimprd 251 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
70693adant3 1134 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
7149, 70mpd 15 1 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wal 1541   = wceq 1543  wex 1787  wcel 2110  wrex 3055  Vcvv 3401  wss 3857   ciun 4894   class class class wbr 5043  cmpt 5124  ccom 5544  cfv 6369  (class class class)co 7202   + caddc 10715  0cn0 12073  cuz 12421  𝑟crelexp 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-seq 13558  df-relexp 14566
This theorem is referenced by:  dftrcl3  40957  dfrtrcl3  40970
  Copyright terms: Public domain W3C validator