| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovexd 7466 | . . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → (𝑗 + 𝑖) ∈ V) | 
| 2 |  | simprlr 780 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑗 ∈ 𝑁) | 
| 3 |  | simpll2 1214 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑁 = (ℤ≥‘𝑀)) | 
| 4 | 2, 3 | eleqtrd 2843 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑗 ∈ (ℤ≥‘𝑀)) | 
| 5 |  | simpll3 1215 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑀 ∈
ℕ0) | 
| 6 |  | simprll 779 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑖 ∈ 𝑁) | 
| 7 | 6, 3 | eleqtrd 2843 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑖 ∈ (ℤ≥‘𝑀)) | 
| 8 |  | eluznn0 12959 | . . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑖 ∈
(ℤ≥‘𝑀)) → 𝑖 ∈ ℕ0) | 
| 9 | 5, 7, 8 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑖 ∈ ℕ0) | 
| 10 |  | uzaddcl 12946 | . . . . . . . . . . . 12
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ 𝑖 ∈ ℕ0) → (𝑗 + 𝑖) ∈ (ℤ≥‘𝑀)) | 
| 11 | 4, 9, 10 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → (𝑗 + 𝑖) ∈ (ℤ≥‘𝑀)) | 
| 12 |  | simplr 769 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑛 = (𝑗 + 𝑖)) | 
| 13 | 11, 12, 3 | 3eltr4d 2856 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑛 ∈ 𝑁) | 
| 14 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑥 ∈ V | 
| 15 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑧 ∈ V | 
| 16 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑦 ∈ V | 
| 17 |  | brcogw 5879 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → 𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧) | 
| 18 | 17 | ex 412 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) → ((𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) → 𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧)) | 
| 19 | 14, 15, 16, 18 | mp3an 1463 | . . . . . . . . . . . 12
⊢ ((𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) → 𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧) | 
| 20 |  | simpll3 1215 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑀 ∈
ℕ0) | 
| 21 |  | simprr 773 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | 
| 22 |  | simpll2 1214 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 = (ℤ≥‘𝑀)) | 
| 23 | 21, 22 | eleqtrd 2843 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ (ℤ≥‘𝑀)) | 
| 24 |  | eluznn0 12959 | . . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ0
∧ 𝑗 ∈
(ℤ≥‘𝑀)) → 𝑗 ∈ ℕ0) | 
| 25 | 20, 23, 24 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ ℕ0) | 
| 26 |  | simprl 771 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | 
| 27 | 26, 22 | eleqtrd 2843 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ (ℤ≥‘𝑀)) | 
| 28 | 20, 27, 8 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ ℕ0) | 
| 29 |  | simpll1 1213 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ 𝑉) | 
| 30 |  | relexpaddss 43731 | . . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℕ0
∧ 𝑖 ∈
ℕ0 ∧ 𝑅
∈ 𝑉) → ((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖)) ⊆ (𝑅↑𝑟(𝑗 + 𝑖))) | 
| 31 | 25, 28, 29, 30 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖)) ⊆ (𝑅↑𝑟(𝑗 + 𝑖))) | 
| 32 |  | simplr 769 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑛 = (𝑗 + 𝑖)) | 
| 33 | 32 | oveq2d 7447 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑗 + 𝑖))) | 
| 34 | 31, 33 | sseqtrrd 4021 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖)) ⊆ (𝑅↑𝑟𝑛)) | 
| 35 | 34 | ssbrd 5186 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥((𝑅↑𝑟𝑗) ∘ (𝑅↑𝑟𝑖))𝑧 → 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 36 | 19, 35 | syl5 34 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) → 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 37 | 36 | impr 454 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → 𝑥(𝑅↑𝑟𝑛)𝑧) | 
| 38 | 13, 37 | jca 511 | . . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) → (𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 39 | 38 | ex 412 | . . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) → (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → (𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 40 | 1, 39 | spcimedv 3595 | . . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → ∃𝑛(𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 41 | 40 | exlimdvv 1934 | . . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
(∃𝑖∃𝑗((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧)) → ∃𝑛(𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 42 |  | reeanv 3229 | . . . . . . 7
⊢
(∃𝑖 ∈
𝑁 ∃𝑗 ∈ 𝑁 (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) ↔ (∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧)) | 
| 43 |  | r2ex 3196 | . . . . . . 7
⊢
(∃𝑖 ∈
𝑁 ∃𝑗 ∈ 𝑁 (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧) ↔ ∃𝑖∃𝑗((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) | 
| 44 | 42, 43 | bitr3i 277 | . . . . . 6
⊢
((∃𝑖 ∈
𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) ↔ ∃𝑖∃𝑗((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ (𝑥(𝑅↑𝑟𝑖)𝑦 ∧ 𝑦(𝑅↑𝑟𝑗)𝑧))) | 
| 45 |  | df-rex 3071 | . . . . . 6
⊢
(∃𝑛 ∈
𝑁 𝑥(𝑅↑𝑟𝑛)𝑧 ↔ ∃𝑛(𝑛 ∈ 𝑁 ∧ 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 46 | 41, 44, 45 | 3imtr4g 296 | . . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 47 | 46 | alrimiv 1927 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 48 | 47 | alrimiv 1927 | . . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 49 | 48 | alrimiv 1927 | . 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 50 |  | cotr 6130 | . . . . 5
⊢ (((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅) ↔ ∀𝑥∀𝑦∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧)) | 
| 51 |  | mptiunrelexp.def | . . . . . . . . . . . 12
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | 
| 52 | 51 | briunov2uz 43711 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑥(𝐶‘𝑅)𝑦 ↔ ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑦)) | 
| 53 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑖 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑖)) | 
| 54 | 53 | breqd 5154 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑖 → (𝑥(𝑅↑𝑟𝑛)𝑦 ↔ 𝑥(𝑅↑𝑟𝑖)𝑦)) | 
| 55 | 54 | cbvrexvw 3238 | . . . . . . . . . . 11
⊢
(∃𝑛 ∈
𝑁 𝑥(𝑅↑𝑟𝑛)𝑦 ↔ ∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦) | 
| 56 | 52, 55 | bitrdi 287 | . . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑥(𝐶‘𝑅)𝑦 ↔ ∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦)) | 
| 57 | 51 | briunov2uz 43711 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑦(𝐶‘𝑅)𝑧 ↔ ∃𝑛 ∈ 𝑁 𝑦(𝑅↑𝑟𝑛)𝑧)) | 
| 58 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑗)) | 
| 59 | 58 | breqd 5154 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → (𝑦(𝑅↑𝑟𝑛)𝑧 ↔ 𝑦(𝑅↑𝑟𝑗)𝑧)) | 
| 60 | 59 | cbvrexvw 3238 | . . . . . . . . . . 11
⊢
(∃𝑛 ∈
𝑁 𝑦(𝑅↑𝑟𝑛)𝑧 ↔ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) | 
| 61 | 57, 60 | bitrdi 287 | . . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑦(𝐶‘𝑅)𝑧 ↔ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧)) | 
| 62 | 56, 61 | anbi12d 632 | . . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → ((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) ↔ (∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧))) | 
| 63 | 51 | briunov2uz 43711 | . . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑥(𝐶‘𝑅)𝑧 ↔ ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧)) | 
| 64 | 62, 63 | imbi12d 344 | . . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 65 | 64 | albidv 1920 | . . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 66 | 65 | albidv 1920 | . . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑦∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 67 | 66 | albidv 1920 | . . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑥∀𝑦∀𝑧((𝑥(𝐶‘𝑅)𝑦 ∧ 𝑦(𝐶‘𝑅)𝑧) → 𝑥(𝐶‘𝑅)𝑧) ↔ ∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 68 | 50, 67 | bitrid 283 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅) ↔ ∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧))) | 
| 69 | 68 | biimprd 248 | . . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀)) → (∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅))) | 
| 70 | 69 | 3adant3 1133 | . 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) →
(∀𝑥∀𝑦∀𝑧((∃𝑖 ∈ 𝑁 𝑥(𝑅↑𝑟𝑖)𝑦 ∧ ∃𝑗 ∈ 𝑁 𝑦(𝑅↑𝑟𝑗)𝑧) → ∃𝑛 ∈ 𝑁 𝑥(𝑅↑𝑟𝑛)𝑧) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅))) | 
| 71 | 49, 70 | mpd 15 | 1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅)) |