Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpuztr Structured version   Visualization version   GIF version

Theorem iunrelexpuztr 41365
Description: The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 14816. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
mptiunrelexp.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpuztr ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑛,𝑀   𝑅,𝑛,𝑟   𝑛,𝑉
Allowed substitution hints:   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem iunrelexpuztr
Dummy variables 𝑥 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7342 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (𝑗 + 𝑖) ∈ V)
2 simprlr 778 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗𝑁)
3 simpll2 1213 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑁 = (ℤ𝑀))
42, 3eleqtrd 2839 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗 ∈ (ℤ𝑀))
5 simpll3 1214 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑀 ∈ ℕ0)
6 simprll 777 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖𝑁)
76, 3eleqtrd 2839 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ (ℤ𝑀))
8 eluznn0 12703 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ0)
95, 7, 8syl2anc 585 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ ℕ0)
10 uzaddcl 12690 . . . . . . . . . . . 12 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑖 ∈ ℕ0) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
114, 9, 10syl2anc 585 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
12 simplr 767 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛 = (𝑗 + 𝑖))
1311, 12, 33eltr4d 2852 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛𝑁)
14 vex 3441 . . . . . . . . . . . . 13 𝑥 ∈ V
15 vex 3441 . . . . . . . . . . . . 13 𝑧 ∈ V
16 vex 3441 . . . . . . . . . . . . 13 𝑦 ∈ V
17 brcogw 5790 . . . . . . . . . . . . . 14 (((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
1817ex 414 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧))
1914, 15, 16, 18mp3an 1461 . . . . . . . . . . . 12 ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
20 simpll3 1214 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ ℕ0)
21 simprr 771 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
22 simpll2 1213 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 = (ℤ𝑀))
2321, 22eleqtrd 2839 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ (ℤ𝑀))
24 eluznn0 12703 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
2520, 23, 24syl2anc 585 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ ℕ0)
26 simprl 769 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
2726, 22eleqtrd 2839 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ (ℤ𝑀))
2820, 27, 8syl2anc 585 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ ℕ0)
29 simpll1 1212 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅𝑉)
30 relexpaddss 41364 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑖 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
3125, 28, 29, 30syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
32 simplr 767 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑛 = (𝑗 + 𝑖))
3332oveq2d 7323 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑗 + 𝑖)))
3431, 33sseqtrrd 3967 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟𝑛))
3534ssbrd 5124 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧𝑥(𝑅𝑟𝑛)𝑧))
3619, 35syl5 34 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥(𝑅𝑟𝑛)𝑧))
3736impr 456 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑥(𝑅𝑟𝑛)𝑧)
3813, 37jca 513 . . . . . . . . 9 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
3938ex 414 . . . . . . . 8 (((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
401, 39spcimedv 3539 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
4140exlimdvv 1935 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
42 reeanv 3214 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
43 r2ex 3189 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
4442, 43bitr3i 277 . . . . . 6 ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
45 df-rex 3072 . . . . . 6 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧 ↔ ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
4641, 44, 453imtr4g 296 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4746alrimiv 1928 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4847alrimiv 1928 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4948alrimiv 1928 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
50 cotr 6030 . . . . 5 (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧))
51 mptiunrelexp.def . . . . . . . . . . . 12 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
5251briunov2uz 41344 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦))
53 oveq2 7315 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝑅𝑟𝑛) = (𝑅𝑟𝑖))
5453breqd 5092 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑥(𝑅𝑟𝑛)𝑦𝑥(𝑅𝑟𝑖)𝑦))
5554cbvrexvw 3223 . . . . . . . . . . 11 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦)
5652, 55bitrdi 287 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦))
5751briunov2uz 41344 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧))
58 oveq2 7315 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝑅𝑟𝑛) = (𝑅𝑟𝑗))
5958breqd 5092 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑦(𝑅𝑟𝑛)𝑧𝑦(𝑅𝑟𝑗)𝑧))
6059cbvrexvw 3223 . . . . . . . . . . 11 (∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)
6157, 60bitrdi 287 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
6256, 61anbi12d 632 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → ((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)))
6351briunov2uz 41344 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
6462, 63imbi12d 345 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6564albidv 1921 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6665albidv 1921 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6766albidv 1921 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6850, 67bitrid 283 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6968biimprd 248 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
70693adant3 1132 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
7149, 70mpd 15 1 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087  wal 1537   = wceq 1539  wex 1779  wcel 2104  wrex 3071  Vcvv 3437  wss 3892   ciun 4931   class class class wbr 5081  cmpt 5164  ccom 5604  cfv 6458  (class class class)co 7307   + caddc 10920  0cn0 12279  cuz 12628  𝑟crelexp 14775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-n0 12280  df-z 12366  df-uz 12629  df-seq 13768  df-relexp 14776
This theorem is referenced by:  dftrcl3  41366  dfrtrcl3  41379
  Copyright terms: Public domain W3C validator