MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwspths2spth Structured version   Visualization version   GIF version

Theorem elwspths2spth 29987
Description: A simple path of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 28-Feb-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypothesis
Ref Expression
elwwlks2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwspths2spth (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐,𝑓,𝑝   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝   𝑊,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem elwspths2spth
StepHypRef Expression
1 elwwlks2.v . . . 4 𝑉 = (Vtx‘𝐺)
21wspthsnwspthsnon 29936 . . 3 (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))
32a1i 11 . 2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
41elwspths2on 29980 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉𝑐𝑉) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
543expb 1121 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑎𝑉𝑐𝑉)) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
652rexbidva 3220 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
7 rexcom 3290 . . . 4 (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
8 wspthnon 29878 . . . . . . 7 (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩))
9 ancom 460 . . . . . . . . 9 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
10 19.41v 1949 . . . . . . . . 9 (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
119, 10bitr4i 278 . . . . . . . 8 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
12 simpr 484 . . . . . . . . . . . . . 14 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → 𝑎𝑉)
13 simpr 484 . . . . . . . . . . . . . 14 ((𝑏𝑉𝑐𝑉) → 𝑐𝑉)
1412, 13anim12i 613 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑐𝑉))
15 vex 3484 . . . . . . . . . . . . . 14 𝑓 ∈ V
16 s3cli 14920 . . . . . . . . . . . . . 14 ⟨“𝑎𝑏𝑐”⟩ ∈ Word V
1715, 16pm3.2i 470 . . . . . . . . . . . . 13 (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
181isspthonpth 29769 . . . . . . . . . . . . 13 (((𝑎𝑉𝑐𝑉) ∧ (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)))
1914, 17, 18sylancl 586 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)))
20 wwlknon 29877 . . . . . . . . . . . . 13 (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))
21 2nn0 12543 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
22 iswwlksn 29858 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
2321, 22mp1i 13 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
24233anbi1d 1442 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2520, 24bitrid 283 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2619, 25anbi12d 632 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
2726adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
2816a1i 11 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
29 simprl1 1219 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩)
30 spthiswlk 29746 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ → 𝑓(Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩)
31 wlklenvm1 29640 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1))
32 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1))
33 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = ((2 + 1) − 1))
34 2cn 12341 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
35 pncan1 11687 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → ((2 + 1) − 1) = 2)
3634, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 + 1) − 1) = 2
3733, 36eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
39383ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4039adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4132, 40eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = 2)
4241ex 412 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
4330, 31, 423syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
44433ad2ant1 1134 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
4544imp 406 . . . . . . . . . . . . . . . . 17 (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = 2)
4645adantl 481 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (♯‘𝑓) = 2)
47 s3fv0 14930 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
4847elv 3485 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎
4948eqcomi 2746 . . . . . . . . . . . . . . . . . 18 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)
50 s3fv1 14931 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏)
5150elv 3485 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏
5251eqcomi 2746 . . . . . . . . . . . . . . . . . 18 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)
53 s3fv2 14932 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
5453elv 3485 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐
5554eqcomi 2746 . . . . . . . . . . . . . . . . . 18 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)
5649, 52, 553pm3.2i 1340 . . . . . . . . . . . . . . . . 17 (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
5756a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
5829, 46, 573jca 1129 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
59 breq2 5147 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑓(SPaths‘𝐺)𝑝𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
60 fveq1 6905 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘0) = (⟨“𝑎𝑏𝑐”⟩‘0))
6160eqeq2d 2748 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑎 = (𝑝‘0) ↔ 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)))
62 fveq1 6905 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘1) = (⟨“𝑎𝑏𝑐”⟩‘1))
6362eqeq2d 2748 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑏 = (𝑝‘1) ↔ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)))
64 fveq1 6905 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘2) = (⟨“𝑎𝑏𝑐”⟩‘2))
6564eqeq2d 2748 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑐 = (𝑝‘2) ↔ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
6661, 63, 653anbi123d 1438 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
6759, 663anbi13d 1440 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
6867ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
6958, 68mpbird 257 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))
7069ex 412 . . . . . . . . . . . . 13 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
7128, 70spcimedv 3595 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
72 spthiswlk 29746 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(SPaths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
73 wlklenvp1 29636 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
74 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
75 2p1e3 12408 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 + 1) = 3
7674, 75eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = 3)
7776eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
7877biimpcd 249 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
7972, 73, 783syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)𝑝 → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
8079imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = 3)
81803adant3 1133 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (♯‘𝑝) = 3)
8281adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (♯‘𝑝) = 3)
83 eqcom 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎)
84 eqcom 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏)
85 eqcom 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐)
8683, 84, 853anbi123i 1156 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
8786biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
88873ad2ant3 1136 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
8988adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
9082, 89jca 511 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))
911wlkpwrd 29635 . . . . . . . . . . . . . . . . . . 19 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9272, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓(SPaths‘𝐺)𝑝𝑝 ∈ Word 𝑉)
93923ad2ant1 1134 . . . . . . . . . . . . . . . . 17 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
9412anim1i 615 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
95 3anass 1095 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
9694, 95sylibr 234 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
97 eqwrds3 15000 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
9893, 96, 97syl2anr 597 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
9990, 98mpbird 257 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
10059biimpcd 249 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)𝑝 → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
1011003ad2ant1 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
103102imp 406 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩)
10448a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
105 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = (⟨“𝑎𝑏𝑐”⟩‘2))
106105, 54eqtrdi 2793 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
1071063ad2ant2 1135 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
108107ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
109103, 104, 1083jca 1129 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐))
110 wlkiswwlks1 29887 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
111110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
11372, 112syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(SPaths‘𝐺)𝑝 → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalks‘𝐺)))
1141133ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalks‘𝐺)))
115114impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 ∈ (WWalks‘𝐺))
116115adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑝 ∈ (WWalks‘𝐺))
117 eleq1 2829 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝 ∈ (WWalks‘𝐺) ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺)))
118117bicomd 223 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺)))
119118adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺)))
120116, 119mpbird 257 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺))
121 s3len 14933 . . . . . . . . . . . . . . . . . . 19 (♯‘⟨“𝑎𝑏𝑐”⟩) = 3
122 df-3 12330 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
123121, 122eqtri 2765 . . . . . . . . . . . . . . . . . 18 (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)
124120, 123jctir 520 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)))
12554a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
126124, 104, 1253jca 1129 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))
127109, 126jca 511 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
12899, 127mpdan 687 . . . . . . . . . . . . . 14 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
129128ex 412 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
130129exlimdv 1933 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
13171, 130impbid 212 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
132131adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
13327, 132bitrd 279 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
134133exbidv 1921 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
13511, 134bitrid 283 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
1368, 135bitrid 283 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
137136pm5.32da 579 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1381372rexbidva 3220 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1397, 138bitrid 283 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
140139rexbidva 3177 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1413, 6, 1403bitrd 305 1 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wrex 3070  Vcvv 3480   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  2c2 12321  3c3 12322  0cn0 12526  chash 14369  Word cword 14552  ⟨“cs3 14881  Vtxcvtx 29013  UPGraphcupgr 29097  Walkscwlks 29614  SPathscspths 29731  SPathsOncspthson 29733  WWalkscwwlks 29845   WWalksN cwwlksn 29846   WWalksNOn cwwlksnon 29847   WSPathsN cwwspthsn 29848   WSPathsNOn cwwspthsnon 29849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-edg 29065  df-uhgr 29075  df-upgr 29099  df-wlks 29617  df-wlkson 29618  df-trls 29710  df-trlson 29711  df-pths 29734  df-spths 29735  df-spthson 29737  df-wwlks 29850  df-wwlksn 29851  df-wwlksnon 29852  df-wspthsn 29853  df-wspthsnon 29854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator