Proof of Theorem elwspths2spth
Step | Hyp | Ref
| Expression |
1 | | elwwlks2.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | wspthsnwspthsnon 27801 |
. . 3
⊢ (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) |
3 | 2 | a1i 11 |
. 2
⊢ (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))) |
4 | 1 | elwspths2on 27845 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))) |
5 | 4 | 3expb 1117 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))) |
6 | 5 | 2rexbidva 3223 |
. 2
⊢ (𝐺 ∈ UPGraph →
(∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))) |
7 | | rexcom 3273 |
. . . 4
⊢
(∃𝑐 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))) |
8 | | wspthnon 27743 |
. . . . . . 7
⊢
(〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉)) |
9 | | ancom 464 |
. . . . . . . . 9
⊢
((〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))) |
10 | | 19.41v 1950 |
. . . . . . . . 9
⊢
(∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))) |
11 | 9, 10 | bitr4i 281 |
. . . . . . . 8
⊢
((〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉) ↔ ∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))) |
12 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) |
13 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → 𝑐 ∈ 𝑉) |
14 | 12, 13 | anim12i 615 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
15 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
16 | | s3cli 14290 |
. . . . . . . . . . . . . 14
⊢
〈“𝑎𝑏𝑐”〉 ∈ Word V |
17 | 15, 16 | pm3.2i 474 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ V ∧
〈“𝑎𝑏𝑐”〉 ∈ Word V) |
18 | 1 | isspthonpth 27637 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑓 ∈ V ∧ 〈“𝑎𝑏𝑐”〉 ∈ Word V)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐))) |
19 | 14, 17, 18 | sylancl 589 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐))) |
20 | | wwlknon 27742 |
. . . . . . . . . . . . 13
⊢
(〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) |
21 | | 2nn0 11951 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ0 |
22 | | iswwlksn 27723 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
ℕ0 → (〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)))) |
23 | 21, 22 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)))) |
24 | 23 | 3anbi1d 1437 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) ↔ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
25 | 20, 24 | syl5bb 286 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
26 | 19, 25 | anbi12d 633 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
27 | 26 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
28 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 〈“𝑎𝑏𝑐”〉 ∈ Word V) |
29 | | simprl1 1215 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉) |
30 | | spthiswlk 27616 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 → 𝑓(Walks‘𝐺)〈“𝑎𝑏𝑐”〉) |
31 | | wlklenvm1 27510 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(Walks‘𝐺)〈“𝑎𝑏𝑐”〉 → (♯‘𝑓) =
((♯‘〈“𝑎𝑏𝑐”〉) − 1)) |
32 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝑓)
= ((♯‘〈“𝑎𝑏𝑐”〉) − 1) ∧
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (♯‘𝑓) = ((♯‘〈“𝑎𝑏𝑐”〉) − 1)) |
33 | | oveq1 7157 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1) →
((♯‘〈“𝑎𝑏𝑐”〉) − 1) = ((2 + 1) −
1)) |
34 | | 2cn 11749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 2 ∈
ℂ |
35 | | pncan1 11102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (2 ∈
ℂ → ((2 + 1) − 1) = 2) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((2 + 1)
− 1) = 2 |
37 | 33, 36 | eqtrdi 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1) →
((♯‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
38 | 37 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) →
((♯‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
39 | 38 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → ((♯‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
40 | 39 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝑓)
= ((♯‘〈“𝑎𝑏𝑐”〉) − 1) ∧
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → ((♯‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
41 | 32, 40 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝑓)
= ((♯‘〈“𝑎𝑏𝑐”〉) − 1) ∧
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (♯‘𝑓) = 2) |
42 | 41 | ex 416 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑓) =
((♯‘〈“𝑎𝑏𝑐”〉) − 1) →
(((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → (♯‘𝑓) = 2)) |
43 | 30, 31, 42 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 → (((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → (♯‘𝑓) = 2)) |
44 | 43 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) → (((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → (♯‘𝑓) = 2)) |
45 | 44 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (♯‘𝑓) = 2) |
46 | 45 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (♯‘𝑓) = 2) |
47 | | s3fv0 14300 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ V →
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎) |
48 | 47 | elv 3415 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 |
49 | 48 | eqcomi 2767 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑎 = (〈“𝑎𝑏𝑐”〉‘0) |
50 | | s3fv1 14301 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ V →
(〈“𝑎𝑏𝑐”〉‘1) = 𝑏) |
51 | 50 | elv 3415 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈“𝑎𝑏𝑐”〉‘1) = 𝑏 |
52 | 51 | eqcomi 2767 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) |
53 | | s3fv2 14302 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ V →
(〈“𝑎𝑏𝑐”〉‘2) = 𝑐) |
54 | 53 | elv 3415 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈“𝑎𝑏𝑐”〉‘2) = 𝑐 |
55 | 54 | eqcomi 2767 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2) |
56 | 49, 52, 55 | 3pm3.2i 1336 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2)) |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))) |
58 | 29, 46, 57 | 3jca 1125 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2)))) |
59 | | breq2 5036 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑓(SPaths‘𝐺)𝑝 ↔ 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
60 | | fveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝‘0) = (〈“𝑎𝑏𝑐”〉‘0)) |
61 | 60 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑎 = (𝑝‘0) ↔ 𝑎 = (〈“𝑎𝑏𝑐”〉‘0))) |
62 | | fveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝‘1) = (〈“𝑎𝑏𝑐”〉‘1)) |
63 | 62 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑏 = (𝑝‘1) ↔ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1))) |
64 | | fveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝‘2) = (〈“𝑎𝑏𝑐”〉‘2)) |
65 | 64 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑐 = (𝑝‘2) ↔ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))) |
66 | 61, 63, 65 | 3anbi123d 1433 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2)))) |
67 | 59, 66 | 3anbi13d 1435 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))))) |
68 | 67 | ad2antlr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))))) |
69 | 58, 68 | mpbird 260 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) |
70 | 69 | ex 416 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
71 | 28, 70 | spcimedv 3512 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
72 | | spthiswlk 27616 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓(SPaths‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) |
73 | | wlklenvp1 27507 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1)) |
74 | | oveq1 7157 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘𝑓) =
2 → ((♯‘𝑓)
+ 1) = (2 + 1)) |
75 | | 2p1e3 11816 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2 + 1) =
3 |
76 | 74, 75 | eqtrdi 2809 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝑓) =
2 → ((♯‘𝑓)
+ 1) = 3) |
77 | 76 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑓) =
2 → ((♯‘𝑝)
= ((♯‘𝑓) + 1)
↔ (♯‘𝑝) =
3)) |
78 | 77 | biimpcd 252 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑝) =
((♯‘𝑓) + 1)
→ ((♯‘𝑓) =
2 → (♯‘𝑝)
= 3)) |
79 | 72, 73, 78 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(SPaths‘𝐺)𝑝 → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3)) |
80 | 79 | imp 410 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = 3) |
81 | 80 | 3adant3 1129 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (♯‘𝑝) = 3) |
82 | 81 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (♯‘𝑝) = 3) |
83 | | eqcom 2765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎) |
84 | | eqcom 2765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏) |
85 | | eqcom 2765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐) |
86 | 83, 84, 85 | 3anbi123i 1152 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
87 | 86 | biimpi 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
88 | 87 | 3ad2ant3 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
89 | 88 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
90 | 82, 89 | jca 515 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))) |
91 | 1 | wlkpwrd 27506 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ Word 𝑉) |
92 | 72, 91 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓(SPaths‘𝐺)𝑝 → 𝑝 ∈ Word 𝑉) |
93 | 92 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉) |
94 | 12 | anim1i 617 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
95 | | 3anass 1092 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ (𝑎 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
96 | 94, 95 | sylibr 237 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
97 | | eqwrds3 14372 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ Word 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑝 = 〈“𝑎𝑏𝑐”〉 ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))) |
98 | 93, 96, 97 | syl2anr 599 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = 〈“𝑎𝑏𝑐”〉 ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))) |
99 | 90, 98 | mpbird 260 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 = 〈“𝑎𝑏𝑐”〉) |
100 | 59 | biimpcd 252 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(SPaths‘𝐺)𝑝 → (𝑝 = 〈“𝑎𝑏𝑐”〉 → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
101 | 100 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = 〈“𝑎𝑏𝑐”〉 → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
102 | 101 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = 〈“𝑎𝑏𝑐”〉 → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
103 | 102 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉) |
104 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉‘0) = 𝑎) |
105 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑓) =
2 → (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = (〈“𝑎𝑏𝑐”〉‘2)) |
106 | 105, 54 | eqtrdi 2809 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑓) =
2 → (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) |
107 | 106 | 3ad2ant2 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) |
108 | 107 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) |
109 | 103, 104,
108 | 3jca 1125 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐)) |
110 | | wlkiswwlks1 27752 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ (WWalks‘𝐺))) |
111 | 110 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ (WWalks‘𝐺))) |
112 | 111 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ (WWalks‘𝐺))) |
113 | 72, 112 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓(SPaths‘𝐺)𝑝 → (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑝 ∈ (WWalks‘𝐺))) |
114 | 113 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑝 ∈ (WWalks‘𝐺))) |
115 | 114 | impcom 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 ∈ (WWalks‘𝐺)) |
116 | 115 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → 𝑝 ∈ (WWalks‘𝐺)) |
117 | | eleq1 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝 ∈ (WWalks‘𝐺) ↔ 〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺))) |
118 | 117 | bicomd 226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺))) |
119 | 118 | adantl 485 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺))) |
120 | 116, 119 | mpbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → 〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺)) |
121 | | s3len 14303 |
. . . . . . . . . . . . . . . . . . 19
⊢
(♯‘〈“𝑎𝑏𝑐”〉) = 3 |
122 | | df-3 11738 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 = (2 +
1) |
123 | 121, 122 | eqtri 2781 |
. . . . . . . . . . . . . . . . . 18
⊢
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1) |
124 | 120, 123 | jctir 524 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1))) |
125 | 54 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) |
126 | 124, 104,
125 | 3jca 1125 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) |
127 | 109, 126 | jca 515 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
128 | 99, 127 | mpdan 686 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
129 | 128 | ex 416 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
130 | 129 | exlimdv 1934 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
131 | 71, 130 | impbid 215 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
132 | 131 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(♯‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(♯‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
133 | 27, 132 | bitrd 282 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
134 | 133 | exbidv 1922 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
135 | 11, 134 | syl5bb 286 |
. . . . . . 7
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → ((〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉) ↔ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
136 | 8, 135 | syl5bb 286 |
. . . . . 6
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
137 | 136 | pm5.32da 582 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
138 | 137 | 2rexbidva 3223 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
139 | 7, 138 | syl5bb 286 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑐 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
140 | 139 | rexbidva 3220 |
. 2
⊢ (𝐺 ∈ UPGraph →
(∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
141 | 3, 6, 140 | 3bitrd 308 |
1
⊢ (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |