MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwspths2spth Structured version   Visualization version   GIF version

Theorem elwspths2spth 27749
Description: A simple path of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 28-Feb-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypothesis
Ref Expression
elwwlks2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwspths2spth (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐,𝑓,𝑝   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝   𝑊,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem elwspths2spth
StepHypRef Expression
1 elwwlks2.v . . . 4 𝑉 = (Vtx‘𝐺)
21wspthsnwspthsnon 27698 . . 3 (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))
32a1i 11 . 2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
41elwspths2on 27742 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉𝑐𝑉) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
543expb 1116 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑎𝑉𝑐𝑉)) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
652rexbidva 3302 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
7 rexcom 3358 . . . 4 (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
8 wspthnon 27639 . . . . . . 7 (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩))
9 ancom 463 . . . . . . . . 9 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
10 19.41v 1949 . . . . . . . . 9 (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
119, 10bitr4i 280 . . . . . . . 8 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
12 simpr 487 . . . . . . . . . . . . . 14 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → 𝑎𝑉)
13 simpr 487 . . . . . . . . . . . . . 14 ((𝑏𝑉𝑐𝑉) → 𝑐𝑉)
1412, 13anim12i 614 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑐𝑉))
15 vex 3500 . . . . . . . . . . . . . 14 𝑓 ∈ V
16 s3cli 14246 . . . . . . . . . . . . . 14 ⟨“𝑎𝑏𝑐”⟩ ∈ Word V
1715, 16pm3.2i 473 . . . . . . . . . . . . 13 (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
181isspthonpth 27533 . . . . . . . . . . . . 13 (((𝑎𝑉𝑐𝑉) ∧ (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)))
1914, 17, 18sylancl 588 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)))
20 wwlknon 27638 . . . . . . . . . . . . 13 (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))
21 2nn0 11917 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
22 iswwlksn 27619 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
2321, 22mp1i 13 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
24233anbi1d 1436 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2520, 24syl5bb 285 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2619, 25anbi12d 632 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
2726adantr 483 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
2816a1i 11 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
29 simprl1 1214 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩)
30 spthiswlk 27512 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ → 𝑓(Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩)
31 wlklenvm1 27406 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1))
32 simpl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1))
33 oveq1 7166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = ((2 + 1) − 1))
34 2cn 11715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
35 pncan1 11067 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → ((2 + 1) − 1) = 2)
3634, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 + 1) − 1) = 2
3733, 36syl6eq 2875 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
3837adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
39383ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4039adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4132, 40eqtrd 2859 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = 2)
4241ex 415 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
4330, 31, 423syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
44433ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
4544imp 409 . . . . . . . . . . . . . . . . 17 (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = 2)
4645adantl 484 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (♯‘𝑓) = 2)
47 s3fv0 14256 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
4847elv 3502 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎
4948eqcomi 2833 . . . . . . . . . . . . . . . . . 18 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)
50 s3fv1 14257 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏)
5150elv 3502 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏
5251eqcomi 2833 . . . . . . . . . . . . . . . . . 18 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)
53 s3fv2 14258 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
5453elv 3502 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐
5554eqcomi 2833 . . . . . . . . . . . . . . . . . 18 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)
5649, 52, 553pm3.2i 1335 . . . . . . . . . . . . . . . . 17 (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
5756a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
5829, 46, 573jca 1124 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
59 breq2 5073 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑓(SPaths‘𝐺)𝑝𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
60 fveq1 6672 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘0) = (⟨“𝑎𝑏𝑐”⟩‘0))
6160eqeq2d 2835 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑎 = (𝑝‘0) ↔ 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)))
62 fveq1 6672 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘1) = (⟨“𝑎𝑏𝑐”⟩‘1))
6362eqeq2d 2835 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑏 = (𝑝‘1) ↔ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)))
64 fveq1 6672 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘2) = (⟨“𝑎𝑏𝑐”⟩‘2))
6564eqeq2d 2835 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑐 = (𝑝‘2) ↔ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
6661, 63, 653anbi123d 1432 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
6759, 663anbi13d 1434 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
6867ad2antlr 725 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
6958, 68mpbird 259 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))
7069ex 415 . . . . . . . . . . . . 13 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
7128, 70spcimedv 3597 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
72 spthiswlk 27512 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(SPaths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
73 wlklenvp1 27403 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
74 oveq1 7166 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
75 2p1e3 11782 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 + 1) = 3
7674, 75syl6eq 2875 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = 3)
7776eqeq2d 2835 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
7877biimpcd 251 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
7972, 73, 783syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)𝑝 → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
8079imp 409 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = 3)
81803adant3 1128 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (♯‘𝑝) = 3)
8281adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (♯‘𝑝) = 3)
83 eqcom 2831 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎)
84 eqcom 2831 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏)
85 eqcom 2831 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐)
8683, 84, 853anbi123i 1151 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
8786biimpi 218 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
88873ad2ant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
8988adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
9082, 89jca 514 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))
911wlkpwrd 27402 . . . . . . . . . . . . . . . . . . 19 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9272, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓(SPaths‘𝐺)𝑝𝑝 ∈ Word 𝑉)
93923ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
9412anim1i 616 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
95 3anass 1091 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
9694, 95sylibr 236 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
97 eqwrds3 14328 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
9893, 96, 97syl2anr 598 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
9990, 98mpbird 259 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
10059biimpcd 251 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)𝑝 → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
1011003ad2ant1 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
102101adantl 484 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
103102imp 409 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩)
10448a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
105 fveq2 6673 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = (⟨“𝑎𝑏𝑐”⟩‘2))
106105, 54syl6eq 2875 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
1071063ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
108107ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
109103, 104, 1083jca 1124 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐))
110 wlkiswwlks1 27648 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
111110adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
112111adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
11372, 112syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(SPaths‘𝐺)𝑝 → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalks‘𝐺)))
1141133ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalks‘𝐺)))
115114impcom 410 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 ∈ (WWalks‘𝐺))
116115adantr 483 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑝 ∈ (WWalks‘𝐺))
117 eleq1 2903 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝 ∈ (WWalks‘𝐺) ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺)))
118117bicomd 225 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺)))
119118adantl 484 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺)))
120116, 119mpbird 259 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺))
121 s3len 14259 . . . . . . . . . . . . . . . . . . 19 (♯‘⟨“𝑎𝑏𝑐”⟩) = 3
122 df-3 11704 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
123121, 122eqtri 2847 . . . . . . . . . . . . . . . . . 18 (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)
124120, 123jctir 523 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)))
12554a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
126124, 104, 1253jca 1124 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))
127109, 126jca 514 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
12899, 127mpdan 685 . . . . . . . . . . . . . 14 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
129128ex 415 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
130129exlimdv 1933 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
13171, 130impbid 214 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
132131adantr 483 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
13327, 132bitrd 281 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
134133exbidv 1921 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
13511, 134syl5bb 285 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
1368, 135syl5bb 285 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
137136pm5.32da 581 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1381372rexbidva 3302 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1397, 138syl5bb 285 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
140139rexbidva 3299 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1413, 6, 1403bitrd 307 1 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  wrex 3142  Vcvv 3497   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543  cmin 10873  2c2 11695  3c3 11696  0cn0 11900  chash 13693  Word cword 13864  ⟨“cs3 14207  Vtxcvtx 26784  UPGraphcupgr 26868  Walkscwlks 27381  SPathscspths 27497  SPathsOncspthson 27499  WWalkscwwlks 27606   WWalksN cwwlksn 27607   WWalksNOn cwwlksnon 27608   WSPathsN cwwspthsn 27609   WSPathsNOn cwwspthsnon 27610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-ac2 9888  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-ac 9545  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-edg 26836  df-uhgr 26846  df-upgr 26870  df-wlks 27384  df-wlkson 27385  df-trls 27477  df-trlson 27478  df-pths 27500  df-spths 27501  df-spthson 27503  df-wwlks 27611  df-wwlksn 27612  df-wwlksnon 27613  df-wspthsn 27614  df-wspthsnon 27615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator