MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwspths2spth Structured version   Visualization version   GIF version

Theorem elwspths2spth 30000
Description: A simple path of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 28-Feb-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypothesis
Ref Expression
elwwlks2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwspths2spth (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐,𝑓,𝑝   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝   𝑊,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem elwspths2spth
StepHypRef Expression
1 elwwlks2.v . . . 4 𝑉 = (Vtx‘𝐺)
21wspthsnwspthsnon 29949 . . 3 (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))
32a1i 11 . 2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
41elwspths2on 29993 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉𝑐𝑉) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
543expb 1120 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑎𝑉𝑐𝑉)) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
652rexbidva 3226 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
7 rexcom 3296 . . . 4 (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
8 wspthnon 29891 . . . . . . 7 (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩))
9 ancom 460 . . . . . . . . 9 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
10 19.41v 1949 . . . . . . . . 9 (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
119, 10bitr4i 278 . . . . . . . 8 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
12 simpr 484 . . . . . . . . . . . . . 14 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → 𝑎𝑉)
13 simpr 484 . . . . . . . . . . . . . 14 ((𝑏𝑉𝑐𝑉) → 𝑐𝑉)
1412, 13anim12i 612 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑐𝑉))
15 vex 3492 . . . . . . . . . . . . . 14 𝑓 ∈ V
16 s3cli 14930 . . . . . . . . . . . . . 14 ⟨“𝑎𝑏𝑐”⟩ ∈ Word V
1715, 16pm3.2i 470 . . . . . . . . . . . . 13 (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
181isspthonpth 29785 . . . . . . . . . . . . 13 (((𝑎𝑉𝑐𝑉) ∧ (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)))
1914, 17, 18sylancl 585 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)))
20 wwlknon 29890 . . . . . . . . . . . . 13 (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))
21 2nn0 12570 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
22 iswwlksn 29871 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
2321, 22mp1i 13 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
24233anbi1d 1440 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2520, 24bitrid 283 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2619, 25anbi12d 631 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
2726adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
2816a1i 11 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
29 simprl1 1218 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩)
30 spthiswlk 29764 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ → 𝑓(Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩)
31 wlklenvm1 29658 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1))
32 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1))
33 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = ((2 + 1) − 1))
34 2cn 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
35 pncan1 11714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → ((2 + 1) − 1) = 2)
3634, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 + 1) − 1) = 2
3733, 36eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
39383ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4039adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4132, 40eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = 2)
4241ex 412 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = ((♯‘⟨“𝑎𝑏𝑐”⟩) − 1) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
4330, 31, 423syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
44433ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (♯‘𝑓) = 2))
4544imp 406 . . . . . . . . . . . . . . . . 17 (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (♯‘𝑓) = 2)
4645adantl 481 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (♯‘𝑓) = 2)
47 s3fv0 14940 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
4847elv 3493 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎
4948eqcomi 2749 . . . . . . . . . . . . . . . . . 18 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)
50 s3fv1 14941 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏)
5150elv 3493 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏
5251eqcomi 2749 . . . . . . . . . . . . . . . . . 18 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)
53 s3fv2 14942 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
5453elv 3493 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐
5554eqcomi 2749 . . . . . . . . . . . . . . . . . 18 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)
5649, 52, 553pm3.2i 1339 . . . . . . . . . . . . . . . . 17 (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
5756a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
5829, 46, 573jca 1128 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
59 breq2 5170 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑓(SPaths‘𝐺)𝑝𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
60 fveq1 6919 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘0) = (⟨“𝑎𝑏𝑐”⟩‘0))
6160eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑎 = (𝑝‘0) ↔ 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)))
62 fveq1 6919 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘1) = (⟨“𝑎𝑏𝑐”⟩‘1))
6362eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑏 = (𝑝‘1) ↔ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)))
64 fveq1 6919 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘2) = (⟨“𝑎𝑏𝑐”⟩‘2))
6564eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑐 = (𝑝‘2) ↔ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
6661, 63, 653anbi123d 1436 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
6759, 663anbi13d 1438 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
6867ad2antlr 726 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
6958, 68mpbird 257 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))
7069ex 412 . . . . . . . . . . . . 13 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
7128, 70spcimedv 3608 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
72 spthiswlk 29764 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(SPaths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
73 wlklenvp1 29654 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
74 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
75 2p1e3 12435 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 + 1) = 3
7674, 75eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = 3)
7776eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
7877biimpcd 249 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
7972, 73, 783syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)𝑝 → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
8079imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = 3)
81803adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (♯‘𝑝) = 3)
8281adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (♯‘𝑝) = 3)
83 eqcom 2747 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎)
84 eqcom 2747 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏)
85 eqcom 2747 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐)
8683, 84, 853anbi123i 1155 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
8786biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
88873ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
8988adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
9082, 89jca 511 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))
911wlkpwrd 29653 . . . . . . . . . . . . . . . . . . 19 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9272, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓(SPaths‘𝐺)𝑝𝑝 ∈ Word 𝑉)
93923ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
9412anim1i 614 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
95 3anass 1095 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
9694, 95sylibr 234 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
97 eqwrds3 15010 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
9893, 96, 97syl2anr 596 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
9990, 98mpbird 257 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
10059biimpcd 249 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPaths‘𝐺)𝑝 → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
1011003ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩))
103102imp 406 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩)
10448a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
105 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = (⟨“𝑎𝑏𝑐”⟩‘2))
106105, 54eqtrdi 2796 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
1071063ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
108107ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐)
109103, 104, 1083jca 1128 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐))
110 wlkiswwlks1 29900 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
111110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(Walks‘𝐺)𝑝𝑝 ∈ (WWalks‘𝐺)))
11372, 112syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(SPaths‘𝐺)𝑝 → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalks‘𝐺)))
1141133ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalks‘𝐺)))
115114impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 ∈ (WWalks‘𝐺))
116115adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑝 ∈ (WWalks‘𝐺))
117 eleq1 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝 ∈ (WWalks‘𝐺) ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺)))
118117bicomd 223 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺)))
119118adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺)))
120116, 119mpbird 257 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺))
121 s3len 14943 . . . . . . . . . . . . . . . . . . 19 (♯‘⟨“𝑎𝑏𝑐”⟩) = 3
122 df-3 12357 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
123121, 122eqtri 2768 . . . . . . . . . . . . . . . . . 18 (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)
124120, 123jctir 520 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)))
12554a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
126124, 104, 1253jca 1128 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))
127109, 126jca 511 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
12899, 127mpdan 686 . . . . . . . . . . . . . 14 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
129128ex 412 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
130129exlimdv 1932 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
13171, 130impbid 212 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
132131adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPaths‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(♯‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalks‘𝐺) ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
13327, 132bitrd 279 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
134133exbidv 1920 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
13511, 134bitrid 283 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
1368, 135bitrid 283 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
137136pm5.32da 578 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1381372rexbidva 3226 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1397, 138bitrid 283 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
140139rexbidva 3183 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1413, 6, 1403bitrd 305 1 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  2c2 12348  3c3 12349  0cn0 12553  chash 14379  Word cword 14562  ⟨“cs3 14891  Vtxcvtx 29031  UPGraphcupgr 29115  Walkscwlks 29632  SPathscspths 29749  SPathsOncspthson 29751  WWalkscwwlks 29858   WWalksN cwwlksn 29859   WWalksNOn cwwlksnon 29860   WSPathsN cwwspthsn 29861   WSPathsNOn cwwspthsnon 29862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-wlks 29635  df-wlkson 29636  df-trls 29728  df-trlson 29729  df-pths 29752  df-spths 29753  df-spthson 29755  df-wwlks 29863  df-wwlksn 29864  df-wwlksnon 29865  df-wspthsn 29866  df-wspthsnon 29867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator