| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgcom | Structured version Visualization version GIF version | ||
| Description: Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| srgcom | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcmn 20105 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 2 | srgacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | srgacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | cmncom 19735 | . 2 ⊢ ((𝑅 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 CMndccmn 19717 SRingcsrg 20102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-cmn 19719 df-srg 20103 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |