MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgcom Structured version   Visualization version   GIF version

Theorem srgcom 19761
Description: Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgacl.b 𝐵 = (Base‘𝑅)
srgacl.p + = (+g𝑅)
Assertion
Ref Expression
srgcom ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem srgcom
StepHypRef Expression
1 srgcmn 19744 . 2 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
2 srgacl.b . . 3 𝐵 = (Base‘𝑅)
3 srgacl.p . . 3 + = (+g𝑅)
42, 3cmncom 19403 . 2 ((𝑅 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
51, 4syl3an1 1162 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  CMndccmn 19386  SRingcsrg 19741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cmn 19388  df-srg 19742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator