| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgcom | Structured version Visualization version GIF version | ||
| Description: Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| srgcom | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcmn 20111 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 2 | srgacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | srgacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | cmncom 19714 | . 2 ⊢ ((𝑅 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 CMndccmn 19696 SRingcsrg 20108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-cmn 19698 df-srg 20109 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |