![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgacl | Structured version Visualization version GIF version |
Description: Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srgacl.b | ⊢ 𝐵 = (Base‘𝑅) |
srgacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srgacl | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 20208 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
2 | srgacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srgacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | 2, 3 | mndcl 18768 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1162 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Mndcmnd 18760 SRingcsrg 20204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-cmn 19815 df-srg 20205 |
This theorem is referenced by: srgcom4lem 20231 srgcom4 20232 srglmhm 20239 srgrmhm 20240 sge0tsms 46336 |
Copyright terms: Public domain | W3C validator |