MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgrz Structured version   Visualization version   GIF version

Theorem srgrz 19677
Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgz.b 𝐵 = (Base‘𝑅)
srgz.t · = (.r𝑅)
srgz.z 0 = (0g𝑅)
Assertion
Ref Expression
srgrz ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )

Proof of Theorem srgrz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgz.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 eqid 2738 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2738 . . . . . . 7 (+g𝑅) = (+g𝑅)
4 srgz.t . . . . . . 7 · = (.r𝑅)
5 srgz.z . . . . . . 7 0 = (0g𝑅)
61, 2, 3, 4, 5issrg 19658 . . . . . 6 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
76simp3bi 1145 . . . . 5 (𝑅 ∈ SRing → ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
87r19.21bi 3132 . . . 4 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
98simprrd 770 . . 3 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → (𝑥 · 0 ) = 0 )
109ralrimiva 3107 . 2 (𝑅 ∈ SRing → ∀𝑥𝐵 (𝑥 · 0 ) = 0 )
11 oveq1 7262 . . . 4 (𝑥 = 𝑋 → (𝑥 · 0 ) = (𝑋 · 0 ))
1211eqeq1d 2740 . . 3 (𝑥 = 𝑋 → ((𝑥 · 0 ) = 0 ↔ (𝑋 · 0 ) = 0 ))
1312rspcv 3547 . 2 (𝑋𝐵 → (∀𝑥𝐵 (𝑥 · 0 ) = 0 → (𝑋 · 0 ) = 0 ))
1410, 13mpan9 506 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Mndcmnd 18300  CMndccmn 19301  mulGrpcmgp 19635  SRingcsrg 19656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-srg 19657
This theorem is referenced by:  srgisid  19679  srglmhm  19686  slmdvs0  31380
  Copyright terms: Public domain W3C validator