|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > srgrz | Structured version Visualization version GIF version | ||
| Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| srgz.b | ⊢ 𝐵 = (Base‘𝑅) | 
| srgz.t | ⊢ · = (.r‘𝑅) | 
| srgz.z | ⊢ 0 = (0g‘𝑅) | 
| Ref | Expression | 
|---|---|
| srgrz | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | srgz.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2736 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | srgz.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 5 | srgz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | issrg 20186 | . . . . . 6 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | 
| 7 | 6 | simp3bi 1147 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) | 
| 8 | 7 | r19.21bi 3250 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) | 
| 9 | 8 | simprrd 773 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (𝑥 · 0 ) = 0 ) | 
| 10 | 9 | ralrimiva 3145 | . 2 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (𝑥 · 0 ) = 0 ) | 
| 11 | oveq1 7439 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 · 0 ) = (𝑋 · 0 )) | |
| 12 | 11 | eqeq1d 2738 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 · 0 ) = 0 ↔ (𝑋 · 0 ) = 0 )) | 
| 13 | 12 | rspcv 3617 | . 2 ⊢ (𝑋 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 · 0 ) = 0 → (𝑋 · 0 ) = 0 )) | 
| 14 | 10, 13 | mpan9 506 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 0gc0g 17485 Mndcmnd 18748 CMndccmn 19799 mulGrpcmgp 20138 SRingcsrg 20184 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-srg 20185 | 
| This theorem is referenced by: srgisid 20207 srglmhm 20219 slmdvs0 33232 rhmqusspan 42187 | 
| Copyright terms: Public domain | W3C validator |