Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srgrz | Structured version Visualization version GIF version |
Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
srgz.t | ⊢ · = (.r‘𝑅) |
srgz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
srgrz | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgz.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | srgz.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
5 | srgz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | issrg 19743 | . . . . . 6 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
7 | 6 | simp3bi 1146 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
8 | 7 | r19.21bi 3134 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
9 | 8 | simprrd 771 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (𝑥 · 0 ) = 0 ) |
10 | 9 | ralrimiva 3103 | . 2 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (𝑥 · 0 ) = 0 ) |
11 | oveq1 7282 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 · 0 ) = (𝑋 · 0 )) | |
12 | 11 | eqeq1d 2740 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 · 0 ) = 0 ↔ (𝑋 · 0 ) = 0 )) |
13 | 12 | rspcv 3557 | . 2 ⊢ (𝑋 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 · 0 ) = 0 → (𝑋 · 0 ) = 0 )) |
14 | 10, 13 | mpan9 507 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 0gc0g 17150 Mndcmnd 18385 CMndccmn 19386 mulGrpcmgp 19720 SRingcsrg 19741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-srg 19742 |
This theorem is referenced by: srgisid 19764 srglmhm 19771 slmdvs0 31478 |
Copyright terms: Public domain | W3C validator |