MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgcmn Structured version   Visualization version   GIF version

Theorem srgcmn 20154
Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgcmn (𝑅 ∈ SRing → 𝑅 ∈ CMnd)

Proof of Theorem srgcmn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2736 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2736 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
61, 2, 3, 4, 5issrg 20153 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
76simp1bi 1145 1 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Mndcmnd 18717  CMndccmn 19766  mulGrpcmgp 20105  SRingcsrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-srg 20152
This theorem is referenced by:  srgmnd  20155  srgcom  20171  srgsummulcr  20188  sgsummulcl  20189  srgbinomlem3  20193  srgbinomlem4  20194  srgbinomlem  20195  gsumvsca2  33229
  Copyright terms: Public domain W3C validator