| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgcmn | Structured version Visualization version GIF version | ||
| Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| srgcmn | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2731 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | issrg 20106 | . 2 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))))) |
| 7 | 6 | simp1bi 1145 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 Mndcmnd 18642 CMndccmn 19692 mulGrpcmgp 20058 SRingcsrg 20104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-srg 20105 |
| This theorem is referenced by: srgmnd 20108 srgcom 20124 srgsummulcr 20141 sgsummulcl 20142 srgbinomlem3 20146 srgbinomlem4 20147 srgbinomlem 20148 gsumvsca2 33196 |
| Copyright terms: Public domain | W3C validator |