Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srgcmn | Structured version Visualization version GIF version |
Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
Ref | Expression |
---|---|
srgcmn | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2739 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2739 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2739 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | eqid 2739 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | issrg 19388 | . 2 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))))) |
7 | 6 | simp1bi 1146 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 +gcplusg 16680 .rcmulr 16681 0gc0g 16828 Mndcmnd 18039 CMndccmn 19036 mulGrpcmgp 19370 SRingcsrg 19386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-nul 5184 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-iota 6307 df-fv 6357 df-ov 7185 df-srg 19387 |
This theorem is referenced by: srgmnd 19390 srgcom 19406 srgsummulcr 19418 sgsummulcl 19419 srgbinomlem3 19423 srgbinomlem4 19424 srgbinomlem 19425 gsumvsca2 31069 |
Copyright terms: Public domain | W3C validator |