MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgcmn Structured version   Visualization version   GIF version

Theorem srgcmn 19260
Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgcmn (𝑅 ∈ SRing → 𝑅 ∈ CMnd)

Proof of Theorem srgcmn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2823 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2823 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2823 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2823 . . 3 (0g𝑅) = (0g𝑅)
61, 2, 3, 4, 5issrg 19259 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
76simp1bi 1141 1 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  0gc0g 16715  Mndcmnd 17913  CMndccmn 18908  mulGrpcmgp 19241  SRingcsrg 19257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161  df-srg 19258
This theorem is referenced by:  srgmnd  19261  srgcom  19277  srgsummulcr  19289  sgsummulcl  19290  srgbinomlem3  19294  srgbinomlem4  19295  srgbinomlem  19296  gsumvsca2  30857
  Copyright terms: Public domain W3C validator