MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgcmn Structured version   Visualization version   GIF version

Theorem srgcmn 19659
Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgcmn (𝑅 ∈ SRing → 𝑅 ∈ CMnd)

Proof of Theorem srgcmn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2738 . . 3 (0g𝑅) = (0g𝑅)
61, 2, 3, 4, 5issrg 19658 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
76simp1bi 1143 1 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Mndcmnd 18300  CMndccmn 19301  mulGrpcmgp 19635  SRingcsrg 19656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-srg 19657
This theorem is referenced by:  srgmnd  19660  srgcom  19676  srgsummulcr  19688  sgsummulcl  19689  srgbinomlem3  19693  srgbinomlem4  19694  srgbinomlem  19695  gsumvsca2  31382
  Copyright terms: Public domain W3C validator