MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgdir Structured version   Visualization version   GIF version

Theorem srgdir 20114
Description: Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgdi.b 𝐵 = (Base‘𝑅)
srgdi.p + = (+g𝑅)
srgdi.t · = (.r𝑅)
Assertion
Ref Expression
srgdir ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))

Proof of Theorem srgdir
StepHypRef Expression
1 srgdi.b . . 3 𝐵 = (Base‘𝑅)
2 srgdi.p . . 3 + = (+g𝑅)
3 srgdi.t . . 3 · = (.r𝑅)
41, 2, 3srgdilem 20108 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
54simprd 495 1 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  .rcmulr 17159  SRingcsrg 20102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-srg 20103
This theorem is referenced by:  srgo2times  20128  srgcom4lem  20129  srgmulgass  20133  srgrmhm  20138
  Copyright terms: Public domain W3C validator