| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgdi.p | ⊢ + = (+g‘𝑅) |
| srgdi.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| srgdir | ⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgdi.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | srgdi.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 3 | srgdi.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | 1, 2, 3 | srgdilem 20157 | . 2 ⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 .rcmulr 17274 SRingcsrg 20151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-srg 20152 |
| This theorem is referenced by: srgo2times 20177 srgcom4lem 20178 srgmulgass 20182 srgrmhm 20187 |
| Copyright terms: Public domain | W3C validator |