MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgrmhm Structured version   Visualization version   GIF version

Theorem srgrmhm 19286
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm 19358. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srgrmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srgrmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 19259 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 515 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 484 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . . 7 · = (.r𝑅)
64, 5srgcl 19262 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763com23 1123 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
873expa 1115 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 6870 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 3anrot 1097 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑎𝐵𝑏𝐵𝑋𝐵))
11 3anass 1092 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
1210, 11bitr3i 280 . . . . . . 7 ((𝑎𝐵𝑏𝐵𝑋𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
13 eqid 2824 . . . . . . . 8 (+g𝑅) = (+g𝑅)
144, 13, 5srgdir 19267 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵𝑋𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1512, 14sylan2br 597 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1615anassrs 471 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
174, 13srgacl 19274 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
18173expb 1117 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1918adantlr 714 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
20 oveq1 7156 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g𝑅)𝑏) · 𝑋))
21 eqid 2824 . . . . . . 7 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
22 ovex 7182 . . . . . . 7 ((𝑎(+g𝑅)𝑏) · 𝑋) ∈ V
2320, 21, 22fvmpt 6759 . . . . . 6 ((𝑎(+g𝑅)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
2419, 23syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
25 oveq1 7156 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋))
26 ovex 7182 . . . . . . . 8 (𝑎 · 𝑋) ∈ V
2725, 21, 26fvmpt 6759 . . . . . . 7 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋))
28 oveq1 7156 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋))
29 ovex 7182 . . . . . . . 8 (𝑏 · 𝑋) ∈ V
3028, 21, 29fvmpt 6759 . . . . . . 7 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋))
3127, 30oveqan12d 7168 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3231adantl 485 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3316, 24, 323eqtr4d 2869 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
3433ralrimivva 3186 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
35 eqid 2824 . . . . . . 7 (0g𝑅) = (0g𝑅)
364, 35srg0cl 19269 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
3736adantr 484 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
38 oveq1 7156 . . . . . 6 (𝑥 = (0g𝑅) → (𝑥 · 𝑋) = ((0g𝑅) · 𝑋))
39 ovex 7182 . . . . . 6 ((0g𝑅) · 𝑋) ∈ V
4038, 21, 39fvmpt 6759 . . . . 5 ((0g𝑅) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
4137, 40syl 17 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
424, 5, 35srglz 19277 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
4341, 42eqtrd 2859 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))
449, 34, 433jca 1125 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅)))
454, 4, 13, 13, 35, 35ismhm 17958 . 2 ((𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))))
463, 44, 45sylanbrc 586 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  cmpt 5132  wf 6339  cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  0gc0g 16713  Mndcmnd 17911   MndHom cmhm 17954  SRingcsrg 19255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-cmn 18908  df-mgp 19240  df-srg 19256
This theorem is referenced by:  srgsummulcr  19287
  Copyright terms: Public domain W3C validator