MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgrmhm Structured version   Visualization version   GIF version

Theorem srgrmhm 19687
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm 19759. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srgrmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srgrmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 19660 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 511 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 480 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . . 7 · = (.r𝑅)
64, 5srgcl 19663 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763com23 1124 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
873expa 1116 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 6971 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 3anrot 1098 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑎𝐵𝑏𝐵𝑋𝐵))
11 3anass 1093 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
1210, 11bitr3i 276 . . . . . . 7 ((𝑎𝐵𝑏𝐵𝑋𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
13 eqid 2738 . . . . . . . 8 (+g𝑅) = (+g𝑅)
144, 13, 5srgdir 19668 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵𝑋𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1512, 14sylan2br 594 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1615anassrs 467 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
174, 13srgacl 19675 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
18173expb 1118 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1918adantlr 711 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
20 oveq1 7262 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g𝑅)𝑏) · 𝑋))
21 eqid 2738 . . . . . . 7 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
22 ovex 7288 . . . . . . 7 ((𝑎(+g𝑅)𝑏) · 𝑋) ∈ V
2320, 21, 22fvmpt 6857 . . . . . 6 ((𝑎(+g𝑅)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
2419, 23syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
25 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋))
26 ovex 7288 . . . . . . . 8 (𝑎 · 𝑋) ∈ V
2725, 21, 26fvmpt 6857 . . . . . . 7 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋))
28 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋))
29 ovex 7288 . . . . . . . 8 (𝑏 · 𝑋) ∈ V
3028, 21, 29fvmpt 6857 . . . . . . 7 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋))
3127, 30oveqan12d 7274 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3231adantl 481 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3316, 24, 323eqtr4d 2788 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
3433ralrimivva 3114 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
35 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
364, 35srg0cl 19670 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
3736adantr 480 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
38 oveq1 7262 . . . . . 6 (𝑥 = (0g𝑅) → (𝑥 · 𝑋) = ((0g𝑅) · 𝑋))
39 ovex 7288 . . . . . 6 ((0g𝑅) · 𝑋) ∈ V
4038, 21, 39fvmpt 6857 . . . . 5 ((0g𝑅) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
4137, 40syl 17 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
424, 5, 35srglz 19678 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
4341, 42eqtrd 2778 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))
449, 34, 433jca 1126 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅)))
454, 4, 13, 13, 35, 35ismhm 18347 . 2 ((𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))))
463, 44, 45sylanbrc 582 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343  SRingcsrg 19656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-cmn 19303  df-mgp 19636  df-srg 19657
This theorem is referenced by:  srgsummulcr  19688
  Copyright terms: Public domain W3C validator