MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgrmhm Structured version   Visualization version   GIF version

Theorem srgrmhm 20142
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm 20233. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srgrmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srgrmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 20110 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 511 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 480 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . . 7 · = (.r𝑅)
64, 5srgcl 20113 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763com23 1126 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
873expa 1118 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 7054 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 3anrot 1099 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑎𝐵𝑏𝐵𝑋𝐵))
11 3anass 1094 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
1210, 11bitr3i 277 . . . . . . 7 ((𝑎𝐵𝑏𝐵𝑋𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
13 eqid 2733 . . . . . . . 8 (+g𝑅) = (+g𝑅)
144, 13, 5srgdir 20118 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵𝑋𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1512, 14sylan2br 595 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1615anassrs 467 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
174, 13srgacl 20125 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
18173expb 1120 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1918adantlr 715 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
20 oveq1 7359 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g𝑅)𝑏) · 𝑋))
21 eqid 2733 . . . . . . 7 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
22 ovex 7385 . . . . . . 7 ((𝑎(+g𝑅)𝑏) · 𝑋) ∈ V
2320, 21, 22fvmpt 6935 . . . . . 6 ((𝑎(+g𝑅)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
2419, 23syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
25 oveq1 7359 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋))
26 ovex 7385 . . . . . . . 8 (𝑎 · 𝑋) ∈ V
2725, 21, 26fvmpt 6935 . . . . . . 7 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋))
28 oveq1 7359 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋))
29 ovex 7385 . . . . . . . 8 (𝑏 · 𝑋) ∈ V
3028, 21, 29fvmpt 6935 . . . . . . 7 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋))
3127, 30oveqan12d 7371 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3231adantl 481 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3316, 24, 323eqtr4d 2778 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
3433ralrimivva 3176 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
35 eqid 2733 . . . . . . 7 (0g𝑅) = (0g𝑅)
364, 35srg0cl 20120 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
3736adantr 480 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
38 oveq1 7359 . . . . . 6 (𝑥 = (0g𝑅) → (𝑥 · 𝑋) = ((0g𝑅) · 𝑋))
39 ovex 7385 . . . . . 6 ((0g𝑅) · 𝑋) ∈ V
4038, 21, 39fvmpt 6935 . . . . 5 ((0g𝑅) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
4137, 40syl 17 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
424, 5, 35srglz 20128 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
4341, 42eqtrd 2768 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))
449, 34, 433jca 1128 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅)))
454, 4, 13, 13, 35, 35ismhm 18695 . 2 ((𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))))
463, 44, 45sylanbrc 583 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345  Mndcmnd 18644   MndHom cmhm 18691  SRingcsrg 20106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-cmn 19696  df-mgp 20061  df-srg 20107
This theorem is referenced by:  srgsummulcr  20143
  Copyright terms: Public domain W3C validator