![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgdi | Structured version Visualization version GIF version |
Description: Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srgdi.b | โข ๐ต = (Baseโ๐ ) |
srgdi.p | โข + = (+gโ๐ ) |
srgdi.t | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
srgdi | โข ((๐ โ SRing โง (๐ โ ๐ต โง ๐ โ ๐ต โง ๐ โ ๐ต)) โ (๐ ยท (๐ + ๐)) = ((๐ ยท ๐) + (๐ ยท ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgdi.b | . . 3 โข ๐ต = (Baseโ๐ ) | |
2 | srgdi.p | . . 3 โข + = (+gโ๐ ) | |
3 | srgdi.t | . . 3 โข ยท = (.rโ๐ ) | |
4 | 1, 2, 3 | srgdilem 20014 | . 2 โข ((๐ โ SRing โง (๐ โ ๐ต โง ๐ โ ๐ต โง ๐ โ ๐ต)) โ ((๐ ยท (๐ + ๐)) = ((๐ ยท ๐) + (๐ ยท ๐)) โง ((๐ + ๐) ยท ๐) = ((๐ ยท ๐) + (๐ ยท ๐)))) |
5 | 4 | simpld 495 | 1 โข ((๐ โ SRing โง (๐ โ ๐ต โง ๐ โ ๐ต โง ๐ โ ๐ต)) โ (๐ ยท (๐ + ๐)) = ((๐ ยท ๐) + (๐ ยท ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 โcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 SRingcsrg 20008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-srg 20009 |
This theorem is referenced by: srgcom4lem 20035 srglmhm 20043 srgbinomlem 20052 |
Copyright terms: Public domain | W3C validator |