MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgmulgass Structured version   Visualization version   GIF version

Theorem srgmulgass 20102
Description: An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgmulgass.b 𝐵 = (Base‘𝑅)
srgmulgass.m · = (.g𝑅)
srgmulgass.t × = (.r𝑅)
Assertion
Ref Expression
srgmulgass ((𝑅 ∈ SRing ∧ (𝑁 ∈ ℕ0𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem srgmulgass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . . . . . . 8 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 7364 . . . . . . 7 (𝑥 = 0 → ((𝑥 · 𝑋) × 𝑌) = ((0 · 𝑋) × 𝑌))
3 oveq1 7356 . . . . . . 7 (𝑥 = 0 → (𝑥 · (𝑋 × 𝑌)) = (0 · (𝑋 × 𝑌)))
42, 3eqeq12d 2745 . . . . . 6 (𝑥 = 0 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))))
54imbi2d 340 . . . . 5 (𝑥 = 0 → ((((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))))
6 oveq1 7356 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
76oveq1d 7364 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((𝑦 · 𝑋) × 𝑌))
8 oveq1 7356 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · (𝑋 × 𝑌)) = (𝑦 · (𝑋 × 𝑌)))
97, 8eqeq12d 2745 . . . . . 6 (𝑥 = 𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))))
109imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)))))
11 oveq1 7356 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
1211oveq1d 7364 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) × 𝑌) = (((𝑦 + 1) · 𝑋) × 𝑌))
13 oveq1 7356 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
1412, 13eqeq12d 2745 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
1514imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
16 oveq1 7356 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1716oveq1d 7364 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 · 𝑋) × 𝑌) = ((𝑁 · 𝑋) × 𝑌))
18 oveq1 7356 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · (𝑋 × 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
1917, 18eqeq12d 2745 . . . . . 6 (𝑥 = 𝑁 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
2019imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))))
21 simpr 484 . . . . . . 7 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → 𝑅 ∈ SRing)
22 simpr 484 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
2322adantr 480 . . . . . . 7 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → 𝑌𝐵)
24 srgmulgass.b . . . . . . . 8 𝐵 = (Base‘𝑅)
25 srgmulgass.t . . . . . . . 8 × = (.r𝑅)
26 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
2724, 25, 26srglz 20093 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑌𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
2821, 23, 27syl2anc 584 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((0g𝑅) × 𝑌) = (0g𝑅))
29 simpl 482 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3029adantr 480 . . . . . . . 8 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → 𝑋𝐵)
31 srgmulgass.m . . . . . . . . 9 · = (.g𝑅)
3224, 26, 31mulg0 18953 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑅))
3330, 32syl 17 . . . . . . 7 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → (0 · 𝑋) = (0g𝑅))
3433oveq1d 7364 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((0 · 𝑋) × 𝑌) = ((0g𝑅) × 𝑌))
3524, 25srgcl 20078 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
3621, 30, 23, 35syl3anc 1373 . . . . . . 7 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → (𝑋 × 𝑌) ∈ 𝐵)
3724, 26, 31mulg0 18953 . . . . . . 7 ((𝑋 × 𝑌) ∈ 𝐵 → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3836, 37syl 17 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3928, 34, 383eqtr4d 2774 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))
40 srgmnd 20075 . . . . . . . . . . . . . 14 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
4140adantl 481 . . . . . . . . . . . . 13 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → 𝑅 ∈ Mnd)
4241adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → 𝑅 ∈ Mnd)
43 simpl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → 𝑦 ∈ ℕ0)
4430adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → 𝑋𝐵)
45 eqid 2729 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4624, 31, 45mulgnn0p1 18964 . . . . . . . . . . . 12 ((𝑅 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4742, 43, 44, 46syl3anc 1373 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4847oveq1d 7364 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌))
4921adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → 𝑅 ∈ SRing)
5024, 31, 42, 43, 44mulgnn0cld 18974 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → (𝑦 · 𝑋) ∈ 𝐵)
5123adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → 𝑌𝐵)
5224, 45, 25srgdir 20083 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 · 𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5349, 50, 44, 51, 52syl13anc 1374 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5448, 53eqtrd 2764 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5554adantr 480 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) ∧ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
56 oveq1 7356 . . . . . . . . 9 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
57353expb 1120 . . . . . . . . . . . . 13 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 × 𝑌) ∈ 𝐵)
5857ancoms 458 . . . . . . . . . . . 12 (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → (𝑋 × 𝑌) ∈ 𝐵)
5958adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → (𝑋 × 𝑌) ∈ 𝐵)
6024, 31, 45mulgnn0p1 18964 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝑋 × 𝑌) ∈ 𝐵) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
6142, 43, 59, 60syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
6261eqcomd 2735 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) → ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
6356, 62sylan9eqr 2786 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) ∧ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
6455, 63eqtrd 2764 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ ((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing)) ∧ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))
6564exp31 419 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
6665a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
675, 10, 15, 20, 39, 66nn0ind 12571 . . . 4 (𝑁 ∈ ℕ0 → (((𝑋𝐵𝑌𝐵) ∧ 𝑅 ∈ SRing) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
6867expd 415 . . 3 (𝑁 ∈ ℕ0 → ((𝑋𝐵𝑌𝐵) → (𝑅 ∈ SRing → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))))
69683impib 1116 . 2 ((𝑁 ∈ ℕ0𝑋𝐵𝑌𝐵) → (𝑅 ∈ SRing → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
7069impcom 407 1 ((𝑅 ∈ SRing ∧ (𝑁 ∈ ℕ0𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  0cn0 12384  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Mndcmnd 18608  .gcmg 18946  SRingcsrg 20071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mulg 18947  df-cmn 19661  df-mgp 20026  df-srg 20072
This theorem is referenced by:  srgpcomppsc  20105  srgbinomlem4  20114
  Copyright terms: Public domain W3C validator